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The application of nonlinear dynamics to improve the understanding of numerical uncer-

tainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use

of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics

are given. The role of dynamics in the understanding of long time behavior of numerical
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I. Introduction

The authors' view and experience in the application of nonlinear dynamics and bifurcation

theory to improve the understanding of numerical uncertainties and their effects in computational

fluid dynamics (CFD) are reviewed. The use of dynamics to illuminate how numerical methods

work for strongly nonlinear problems is indirectly addressed. Simple nonlinear model equations

are used to illustrate how the recent advances in nonlinear dynamical system theory can provide

new insights and further the understanding of nonlinear effects on the asymptotic behavior

of numerical algorithms commonly used in CFD. The discussion is complemented with CFD

examples containing spurious behavior (numerical artifacts) in steady and unsteady flows. This

topic is part of a long term research referred to as the "Dynamics of Numerics for CFD". Here

"dynamics" is used loosely to mean the dynamical behavior of nonlinear dynamical systems

(continuum or discrete) and "numerics" is used loosely to mean the numerical methods and

procedures in solving dynamical systems. For this paper, the phrase "to study the dynamics of

numerics" (dynamical behavior of a numerical scheme) is restricted to the study of nonlinear

and long time behaviors of nonlinear difference equations resulting from finite discretizations

of a nonlinear differential equation (DE) subject to the variation of discretized parameters such

as the time step, grid spacing, numerical dissipation coefficient, etc. This topic belongs to

a subset of a rather new field in numerical analysis and dynamical system theory sometimes

referred to as "The Dynamics of Numerics and The Numerics of Dynamics," named after

the First IMA Conference on Dynamics of Numerics and Numerics of Dynamics, University of

Bristol, England, July 31 - August 2, 1990. We emphasize here that in the study of the dynamics

of numerics, unless otherwise stated, we always assume the continuum (governing equations)

is nonlinear. Although this paper is intended primarily for computational fluid dynamicists, it

can be useful for computational scientists, physicists, engineers and computer scientists who

have a need for reliable numerical simulation.

Since the late 1980's, many CFD related journals imposed an editorial policy statement

on numerical uncertainty which pertained mainly to the accuracy issue. However, the study

of numerical uncertainties in practical computational physics encompasses very broad subject

areas. These include but are not limited to (a) problem formulation and modeling, (b) type,

order of accuracy, nonlinear stability, and convergence of finite discretizations, (c) limits

and barriers of existing finite discretizations for highly nonlinear stiff problems with source

terms and forcing, and/or for wave propagation phenomena, (d) numerical boundary condition

procedures, (e) finite representation of infinite domains (f) solution strategies in solving

the nonlinear discretized equations, (g) procedures for obtaining the steady-state numerical

solutions, (h) grid quality and grid adaptations, (i) multigrids, and (j) domain decomposition

(zonal or multicomponent approach) in solving large problems. See the last six years of AIAA

conference papers on numerical uncertainties in CFD and guidelines for code verification,

validation and certification. See, for example, Mehta (1995), Metnik et al. (1994), Cosner et

al. (1995), Demuren & Wilson (1994) Marvin (1993), Marvin & Holst (1990) and references

cited therein. At present, some of the numerical uncertainties can be explained and minimized

by traditional numerical analysis and standard CFD practices. Highly nonlinear and/or stiff
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problems,however,do not always lendthemselvesto suchtreatment.At the sametime, the
understandingof thedynamicsof numerics,in general,is ata veryearlystageof development
and much remainsto be learned. More theoreticaldevelopmentand extensivenumerical
experimentationareneeded. Nevertheless,we believe that this approachcan improve the
understandingof numericaluncertaintiesandcomputationalbarriers in CFD in general, and

in particular in combustion, direct numerical simulations, high speed and reacting flows, and

certain turbulence models in compressible Navier-Stokes computations.

A major stumbling block in genuinely nonlinear studies is that unlike the linear model

equations used for conventional stability and accuracy considerations in time-dependent partial

differential equations (PDEs), there is no equivalent unique nonlinear model equation for

nonlinear hyperbolic and parabolic PDEs for fluid dynamics. A numerical method behaving

in a certain way for a particular nonlinear DE (PDE or ordinary differential equation (ODE))

might exhibit a different behavior for a different nonlinear DE even though the DEs are of

the same type. See Jackson (1989) for the definition of genuinely (or strongly) nonlinear

problems. On the other hand, even for simple nonlinear model DEs with known solutions,

the discretized counterparts can be extremely complex, depending on the numerical methods.

Except in special cases, there is no general theory at the present time to characterize the various

nonlinear behaviors of the underlying discretized counterparts. Most often, the only recourse

is a numerical approach. Under this constraint, whenever analytical analysis of the discretized

counterparts is not possible, the associated dynamics of numerics such as bifurcation phenomena

and asymptotic behavior are obtained numerically using supercomputers. The term "discretized

counterparts" is used to mean the finite difference equations (or "discrete maps") resulting

from finite discretizations of the underlying differential equations (DEs). Analysis here means

analysis of the discretized counterparts by (a) available theory (b) searching for asymptotic

solution behavior without resorting to purely numerical computations and (c) using continuation

types of approaches to trace out the bifurcation diagrams (Keller 1977). This is the case for

most of the illustrations throughout this paper. It is hoped that we can encourage numerical

analysts to construct practical algorithms (to avoid spurious dynamics) based on the numerical

phenomena observed using supercomputers to balance advances of computations and analyses.

We also hope that it will strengthen the interface of numerical analysis with practical CFD

applications and motivate CFD researchers who are looking for new. approaches and solutions

to new or old but challenging problems.

Due to the rapid independent development of dynamics of continuum and discrete maps,

and the numerics of dynamics and the dynamics of numerics, it is extremely difficult to write

a review paper on the subject. Topics discussed and references cited are only representative of

the subject and reflect the authors' experiences and preference toward certain areas at the time

of this writing. Only selected properties of the observed phenomena are discussed.

Outline: A rather detailed background, motivation and subtleties of the subject will be given

in Section II due to the relatively new yet interdisciplinary nature of this research topic for

CFD. The subtleties discussed are necessary to illuminate and isolate the sources of numerical

uncertainties due to factors such as slow convergence or nonconvergence of numerical schemes,
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and nonlinearbehaviorof high-resolutionshock-capturingschemes.Theseinclude but are
not limited to spuriousnonlinearbehaviorof numericssuchas "spuriouschaos", "spurious
traveling waves", "spurious chaotic transient" in transition to turbulence flows, "spurious

steady-state numerical solutions" and "spurious asymptotes" (e.g., spurious limit cycles).

Here "spurious numerical solutions (and asymptotes)" is used to mean numerical solutions

(asymptotes) that are solutions (asymptotes) of the discretized counterparts but are not solutions

(asymptotes) of the underlying DEs. Asymptotic solutions here include steady-state solutions,

periodic solutions, limit cycles, chaos and strange attractors. See Thompson & Stewart (1986)

and Hoppensteadt (1993) for the definition of chaos and strange attractors. The background

material includes the connection between nonlinear dynamics and fluid dynamics, between

nonlinear dynamics and CFD, between nonlinear dynamics and time-marching approaches.

Section III reviews the basic terminology in nonlinear dynamics and reviews selected

examples from our previous work. These examples consist of nonlinear model ODEs and PDEs.

Particular attention is paid to the isolation of the different nonlinear behavior and spurious

dynamics due to some of the numerical uncertainties mentioned earlier. The numerical schemes

considered are selected to illustrate the following different spurious behavior of the dynamics
of numerics.

(a) Occurrence of stable and unstable spurious asymptotes above the linearized stability limit

of the scheme (for constant step sizes)

(b) Occurrence of stable and unstable spurious steady states below the linearized stability

limit of the scheme (for constant step sizes)

(c) Interplay of initial data and time steps on the permissibility of spurious asymptotes

(d) Linearized behavior vs. nonlinear behavior of numerical solutions

(e) Stabilization of unstable steady states by super-stable implicit methods

(f) Interference with the dynamics of the underlying implicit scheme by procedures in solving

the nonlinear algebraic equations (resulting from implicit discretization of the continuum)

(g) Dynamics of the linearized implicit Euler scheme vs. Newton's method

(h) Local error control in ODE solvers and the conferrance of global properties of the
nonlinear ODEs

(i) Spurious chaos and chaotic transients

(j) Spurious dynamics independently introduced by spatial and time discretizations

Sections IV and V illustrate examples of CFD computations that exhibit spurious behavior

due to numerics. The discussion is divided into transient and steady-state computations with

several examples for each category. Sections 4.2.1, 5.1, 5.2 and 5.4 were written by the

original contributors of the respective work. Section IV was taken from Yee & Sweby (1996).

It is mainly concerned with convergence rate and spurious behavior of time-marching to the

steady states of high-resolution shock-capturing methods. Section V is concerned with a

"numerically induced chaotic transient" computation, and spurious behavior and convergence

rate of transient computations of high-resolution shock-capturing schemes. The final section

discusses how to use existing tools in bifurcation theory to avoid convergence to the wrong

steady states or asymptotes. These tools are based on the combined knowledge of recent
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advancesin thedynamicsof the physicalequationsandthedynamicsof theunderlyingf'mite
discretizationsusingexistingtools in bifurcationtheoryandnonlineardynamics.Notethatthe
referencelist containsmorereferencesthanarecitedinsidethetext.Theseextrareferencesare
intendedfor interestedreadersto pursuethis subjectfurther.

II. Background & Motivations

Starting in the late 1970's, there have been important developments and breakthroughs

concerned with the theory of nonlinear dynamical systems. There was also an explosion of

journal and conference papers, texts and reference books on the subject in the 1980's and early

1990's. See for example, Guckenheimer & Holmes (1983), Thompson & Stewart (1988), Seydel

(1988), Hales & Kocak (1991), Stewart (1990), Wiggins (1990), and Hoppensteadt (1993).

During the early 1980's, a new area of applied mathematics emerged from the interaction

of dynamical system theory and numerical analysis. These developments addressed mainly

mathematical principles and their applications of numerics in the understanding of the dynamics

of DEs without discussing the connection between dynamics and numerics for initial value

problems (IVPs) and initial boundary value problems (IBVPs). There was, however, some

discussion on this connection for boundary value problems (BVPs) (Doedel & Beyn 1981,

Doedel 1986, Shubin et al. 1981, Kellogg et al. 1980, Peitgen et al. 1981 and Shreiber & Keller

1983). Studies of BVPs of the elliptic type continue to the present day. See, for example, the

SIAM Conference on Dynamical Systems, October 15-19, 1992, and the Proceedings of IMA

Conferences on Dynamics of Numerics and Numerics of Dynamics, July 31 - Aug. 2, 1990,

Bristol, England.

Why is it important to understand the connection between dynamics and numerics for BVPs,

IVPs and IBVPs? It stems from the fact that it is a standard practice to use numerics to discover

dynamical properties of continuous systems. As a matter of fact, much of what we know about

specific dynamical systems is usually obtained from numerical experiments. One not only can

visualize the dynamics and the bifurcation phenomena associated with numerics, but in most

of the cases the dynamical behaviors of the DEs are not amenable otherwise. Consequently,

developments concerned with the connection between dynamics and numerics are necessary

to bridge the gap in a better understanding of the dynamics of numerics and the numerics of

dynamics.

In the late 1980's, developments concerned with the connection between dynamics and

numerics for IVPs and IBVPs slowly emerged. See for example, Mitchell & Griffiths (1985),

Griffiths & Mitchell (1988), Pruffer (1985), Iserles (1988), Lorenz (1989) and Sanz-Serna

(1985, 1990), and Salas et al. (1986). These developments raised many interesting and

important issues of concern that are useful to practitioners in computational sciences. The

following lists some of the issues:

(a) Can recent advances in dynamical systems provide new insights into better understanding

of numerical algorithms and the construction of new ones?



(b) Cantheseadvancesaid in thedeterminationof a more reliablecriterionon theuseof
existingnumericalschemesfor stronglynonlinearproblems?

(c) Underwhatconditionsshoulda nonlinear problem be treated as a genuinely nonlinear

problem rather than as a simplified linear problem?

(d) Do traditional convergence and linear stability analyses apply to asymptotic nonlinear

behavior and in particular to long time numerical simulation of nonlinear evolutionary PDEs?

(e) Does error control suppress spuriosity? To what extent does local error control confer

global properties in IVPs (long time integration) of nonlinear DEs?

(f) What is the influence of finite time steps and grid spacings rather than time steps and

grid spacings approaching zero on the overall nonlinear behavior and stability of the scheme in

terms of allowable initial data and discretized parameters?

(g) How different is the dynamical behavior of different procedures in solving the nonlinear

algebraic equations resulting from using implicit time discretizations?

Since the early 1990's, the use of dynamics to address long time behavior of numerical

schemes for IVPs and IBVPs began to flourish. The more recent work includes the Conference

on Dynamics of Numerics and Numerics of Dynamics (University of Bristol, July 31 -

August 2, 1990), the Chaotic Numerics Workshop (Deakin University, Geelong, Australia,

July 12-16, 1993), the Conference on Dynamical Numerical Analysis (Georgia Institute of

Technology, Atlanta, Georgia, December 14-16, 1995), and the "Innovative Time Integrators

Workshop" (Center for Mathematics and computer Science, Amsterdam, November 6-8, 1996,

the Netherlands). These conferences were devoted almost entirely to dynamical numerical

analysis. See the proceedings and references cited therein. See also Stuart (1994, 1995),

Humphries (1992), Hairer et al. (1989), Aves et al. (1995), Corless (1994a,b), Dieci & Estep

(1991), and Poliashenko & Aidun (1995). The majority of the later developments concentrated

on long time behavior of ODE solvers using variable step size based on local error controls

(Butcher 1987). This type of local error controls enjoyed much success in controlling accuracy

and stability for transient computations.

On the other hand, even though standard practice in ODE solvers uses local error control

for the selection of step size, practical CFD applications rarely employ this type of variable

step size control due to the lack of efficient and practical theory for highly coupled nonlinear

time-dependent PDEs. See Section 3.6 for a discussion. It should also be noted that finite

element methods use ODEs solvers for the time integration part of the solution. There is also

some preliminary work on computability and error control in finite element methods. See

Johnson (1995) and Johnson et al. (1995) and references cited therein. Indirectly, this type of

approach does make use of adaptive step size error controls. There still remains the question of

spurious dynamics due to spatial discretizations. In practical CFD computations, one usually

uses fixed grid spacings and time step constraints based on a linearized stability requirement or

the Courant-Friedrich-Lewy (CFL) condition. Usually, after the initial transient dies down, the
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step sizes are nearly constant from one step to the next in time marching to the steady state.

The caveat is that regardless of whether finite difference (and finite volume) or f'mite

element methods are employed, when time-marching approaches are used to obtain steady-state

numerical solutions, local error controls similar to that used in ODE solvers that were designed

for accuracy purposes are neither practical nor appropriate to use, since such local step size error

control methods might prevent the solution from reaching the correct steady-state solutions

within a reasonable number of iterations. It is remarked that the standard practice of using

"local time step" (varied from grid point to grid point with the same CFL) in time-marching

to the steady state is not the same as the variable step size based on local error controls.

The authors believe that the understanding of the dynamics of numerics for fixed step size is

necessary from that aspect. Besides, the study of the dynamics of ODE solvers using variable

step size based on local error control requires the knowledge of the constant step size case

(Ayes et al. 1995). In a series of papers, Yee et al. (1991), Yee & Sweby (1994, 1995a,b),

Sweby et al. (1990, 1995), Sweby & Yee (1992, 1994), and Lafon & Yee (1991, 1992) studied

the dynamics of finite discretization for fixed (constant) time steps. The examples used in

these papers were deliberately kept simple to permit explicit analysis. The approach was to
take nonlinear model ODEs and PDEs with known explicit solutions (the most straight forward

way of being sure what is 'really' happening), discretize them according to various standard

numerical methods, and apply techniques from discrete dynamics to analyze the behavior of the

discretized counterparts. Particular attention was paid to the isolation of the different nonlinear

behavior and spurious dynamics due to some of the numerical uncertainties listed in Section

I. These studies revealed much rich dynamical phenomena that we believe are useful for CFD

and at the same time were not amenable with available theory at the time. The present paper

alludes mainly to this aspect of the dynamics of numerics.

2.1. Nonlinear Dynamics and Fluid Dynamics

Most of the available fluid dynamics and CFD related texts and reference books describe the

Euler and Navier-Stokes equations in differential form as coupled systems of nonlinear PDEs.

These equations are rarely classified as dynamical systems. However, fluid dynamicists are
often interested in how the flow behaves as a function of one or more physical parameters. Of

particular interest to fluid dynamicists is locating the critical value of the physical parameter

where the fluid undergoes drastic changes in the flow behavior. Some examples are the

prediction of transition to turbulence or laminar instability as a function of the Reynolds

number, flow separation and stall as a function of ReynoMs number and angle of attack,

rotorcraft vibration as a function of rotation speed and flight speed, the occurrence of shock

waves as a function of the body shape and/or Mach number, and the formation of vortices,

flutter, and other flow phenomena as a function of the angle of attack or other physical

parameters. Another application is in the area of aiding the understanding of the topology of

flow patterns (flow visualizations) of laboratory experiments, observable physical phenomena

and numerical data. An additional important topic for CFD is the control and optimization
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of dynamical systems. This involves the application of optimization and control theory to

dynamical systems. Researchers are beginning to use these interdisciplinary ideas to study, for

example, the control of turbulence, the control of vortex generation and/or shock waves, the

control of vibration in rotorcraft, and the control of aerodynamic noise such as sonic boom and

jet noise.

The application of dynamical system theory to the study of spatio-temporal instabilities of

aerodynamic and hydrodynamic flows and chaotic systems in fluid dynamics was discussed

respectively in the 1994 and 1996 yon Karman Institute for Fluid Dynamics Lecture Series.

How the solution behaves as one or more of the system parameters is varied is precisely the

definition of dynamical systems and bifurcation theory. According to Ian Stewart (1990)

"Bifurcation theory is a method for finding interesting solutions to nonlinear equations by

tracking dull ones and waiting for them to lose stability."

As evident from the Third SIAM Conference on the Application of Dynamical Systems,

May 21-24, 1995, Snowbird, Utah, presentations in treating the various fluid flow equations as

dynamical systems have pushed these topics to the forefront of applied mathematical research.

2.2. Nonlinear Dynamics and CFI)

When we try to use numerical methods to gain insight into the fluid physics, there is an

added new dimension to the overall problem. Even though we freeze the physical parameters

of the governing equations, the resulting discretized counterparts (from f'mite discretizations of

the goveming equations) are not just a nonlinear system of difference equations, but are also

a nonlinear but discrete dynamical system on their own. From nonlinear dynamics, we know

that discrete dynamical systems possess much richer dynamical behavior than the continuum

dynamical systems. These resulting discrete dynamical systems are a function of all of the

discretized parameters which are not present in the governing equations. See Section III for a

discussion. This is one of the key factors in influencing the numerical solution to depart from

the physical ones if the governing equations are strongly nonlinear and stiff.

Of course, before analyzing the dynamics of numerics, it is necessary to analyze (or

understand) as much as possible the dynamical behavior of the governing equations and/or

the physical problems using theories of ODEs, PDEs, dynamical systems of ODEs and PDEs,

and also physical guidelines. In fact, a knowledge of the theories of ODEs, PDEs, dynamical

behavior of nonlinear DEs, and the dynamical behavior of nonlinear discrete maps (difference

equations) is a prerequisite to the study of dynamics of numerics. In an idealized situation, if

one knows the dynamical behavior of the governing equations, one can then construct suitable

numerical methods for that class of dynamical systems. Consequently, spurious dynamics due

to numerics can be minimized and that computation and analysis kept pretty much in tune.

However, as applied scientists want to push the envelope of understanding of realistic flows and

configurations further, dependence on the numerics takes over even though rigorous analysis



lags behind. Starting in the late 1970's the advances in computer power resulted in attempts

to use CFD to replace wind tunnel experiments and use numerics to understand dynamical

systems. The gap between computation and analysis increased. The nonlinear behavior of

commonly used algorithms in CFD was not well understood but at the same time applied CFD

increased the intensity of using these algorithms to solve more complex practical problems

where the flow physics and configurations under consideration were not understood, and were

either too costly for or not amenable to laboratory experiments. CFD was and remains in

a stage where computation is ahead of analysis. In other words, we usually do not know

enough about the solution behavior of the underlying DEs in practice, and we are at the stage

where the understanding of the dynamics of the DEs and the understanding of the dynamics of

numerics are in tandem, and they both are rapidly growing research areas. With this in mind,

we summarize some of the sources of nonlinearities in the study of dynamics of numerics for

CFD.

The sources of nonlinearities that are well known in CFD are due to the physics. Examples

of nonlinearities due to the physics are convection, diffusion, forcing, turbulence source terms,

reacting flows, combustion related problems, or any combination of the above. The less familiar

sources of nonlinearities are due to the numerics. There are generally three major sources:

(a) Nonlinearities due to time discretizations -- the discretized counterpart is nonlinear in

the time step. Examples of this type are Runge-Kutta methods. It is noted that linear multistep

methods (LMMs) are linear in the time step. See Lambert (1973) for the forms of these methods.

(b) Nonlinearities due to spatial discretizations -- in this case, the discretized counterpart can

be nonlinear in the grid spacing and/or the scheme. Examples of nonlinear schemes are the total

variation diminishing (TVD) and essentially nonoscillatory (ENO) schemes. See Yee (1989)

and references cited therein for the forms of these schemes.

(c) Nonlinearities due to complex geometries, boundary interfaces, grid generation, grid

refinements and grid adaptations -- each of these procedures can introduce nonlinearities.

The behavior of the above nonlinearities due to the numerics are not well understood. Only

some preliminary development is beginning to emerge recently.

2.3. Dynamics of Numerical Approximations of ODEs vs. Time-Dependent PDEs

Recent analyses and studies have shown that spurious numerical solutions can be inde-

pendently introduced by time and spatial discretizations. Take the case when the ODEs are

obtained from semi-discrete approximations of PDEs, the resulting system of ODEs contains

more parameters (due to spatial discretizations) as opposed to physical problems governed

by ODEs. The parameters due to spatial discretizations for the semi-discrete approximation

becomes the system parameter (instead of the discretized parameter) of the resulting system of

ODEs. Depending on the differencing scheme the resulting discretized counterparts of a PDE

can be nonlinear in At, the grid spacing Az and the numerical dissipation parameters, even

though the PDEs have only one parameter or none. One major consideration is that one might



beableto choosea "safe" numericalmethodto solvethe resultingsystemof ODEsto avoid
spuriousstablenumericalsolutionsdueto time discretizations.However,spuriousnumerical
solutionsandespeciallyspatiallyvarying steadystatesintroducedby spatialdiscretizationsin
nonlinearhyperbolicandparabolicPDEsfor CFDapplicationsappearto be more difficult to

avoid due to the use of a fixed mesh. In the case of the semi-discrete approach such as methods

of lines or finite element methods, if spurious numerical solutions due to spatial discretizations

exist, the resulting ODE system has already inherited this spurious feature as part of the exact

solution of the semi-discrete case. Thus care must be taken in using the ODE solver computer

packages for PDE applications. See Lafon & Yee (199 l, 1992) and Section 3.7 for a discussion.

2.4. Nonlinear Dynamics and Time-Marching Approaches

The use of time-marching approaches to obtain steady-state numerical solutions has been

considered the method of choice in CFD for nearly two decades since the pioneering work of

Crocco (1965) and Moretti & Abbett (1966). Moretti and Abbett used this approach to solve

the inviscid supersonic flow over a blunt body without resorting to solving the steady form of

PDEs of the mixed type. The introduction of efficient CFD algorithms of MacCormack (1969),

Beam & Warming (1978), Briley & McDonald (1977) and Steger (1978) marked the beginning

of numerical simulations of 2-D and 3-D Navier-Stokes equations for complex configurations.

It enjoyed much success in computing a variety of weakly and moderately nonlinear fluid

flow problems. For strongly nonlinear problems, the situation is more complicated. To aid

the understanding of the scope of the situation, first, we have to identify all the sources of
nonlinearities. Second, we have to isolate all elements and issues of numerical uncertainties

due to these nonlinearities in time-marching to the steady state. The following isolates some of

the key elements and issues of numerical uncertainties in time-marching to the steady state.

Solvin# an IB VP with Unknown Initial Data: In time-marching approaches, one transforms

a BVP to an IBVP with unknown initial data. Elements such as reliability, convergence with

unknown initial data and rapid convergence to the correct steady state are the predominant

requirements. The time differencing in this case acts as a pseudo time. Although it is well

known from linearized stability analysis that only a subset of the numerical solutions for

certain ranges of the discretized parameters (these ranges can be continuous or disjoint for

problems with source terms) and boundary conditions mimic the true solution behavior of the

governing equations, it is less well known that outside these safe regions the numerical solution,

depending on the initial data, do not necessarily undergo instabilities. In addition, there exist

asymptotic numerical solutions that are not solutions of the continuum even inside the safe

regions. Unlike nonlinear problems, the numerical solutions of linear or nearly linear problems

are "independent" of the discretized parameters and initial data as long as the discretized

parameters are inside the stability limit (CFL condition). We put "independent" in quotations

here to mean that the numerical solutions behave the same up to the order of accuracy and

grid spacing of the scheme. That is, the topological shapes of these solutions remain the same

within the stability limit and accuracy of the scheme for linear behavior. Section 3.4 illustrates
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thestrongdependenceof thenumericalsolutionon initial datafor nonlinearDEs. It turnsout
that if constantstepsizesareused,stability, convergencerateand permissibilityof spurious
numericalsolutionsareintimatelyrelatedto thechoiceof initial data(or startupsolution).

Reliability of Residual Test: The deficiency of the use of residual tests in detecting the

convergence rate and the convergence to the correct steady-state numerical solutions is now

briefly discussed. Consider a quasilinear PDE of the form

= (2.1)

where G is nonlinear in u, u. and u... The values a and _ are system parameters. For

simplicity, consider a two time level and a (p + q + 1) point grid stencil numerical scheme of

the form

u_ +a : u_ - H(uj_+,,...,u_,...,u__p,a,e, At, Az) (2.2)

for the PDE (2.1). Note that the discussion need not be restricted to explicit methods or two

time level schemes. Let U*, a vector representing (u_+_, ...,u_, ..., u__p), be a steady-state

numerical solution of (2.2). When a time-marching approach such as (2.2) is used to solve

the steady-state equation G(u, u., u.., a, e) = 0, the iteration typically is stopped when the

residual//and/or some 12 norm of the dependent variable u between two successive iterates is

less than a pre-selected level.

Aside from the various standard numerical errors such as truncation error, machine round-off

error, etc., there is a more fundamental question of the validity of the residual test and/or 12 norm

test. If the spatial discretization happens to produce spurious steady-state numerical solutions,

these spurious solutions would still satisfy the residual and 12 norm tests in a deceptively smooth

manner. Moreover, aside from the spurious solution issue and depending on the combination of

time as well as spatial discretizations, it is not easy to check whether G(u*, u*, u_., a, e) _ 0

even though H(U*,a, e, At, Az) _ 0, since spurious steady states (and asymptotes) can be

independently introduced by spatial and time discretizations. This is contrary to the ODE case,

where if u* is a spurious steady state ofdu/dt = S(u), then S(u*) _ O. Ira steady state has

been reached with a rapid convergence rate, it does not imply that the obtained steady state is

not spurious.

Methods Used to Accelerate Conne_enee Process: Methods such as iterations and relaxation

procedures, and/or convergence acceleration methods such as conjugate gradient methods have

been utilized to speed up the convergence process (Saad 1994). Also techniques such

as preconditioning (Turkel 1993) and multigrid (Wesseling 1992) combined with iteration,

relaxation and convergence acceleration procedures are commonly used in CFD. Depending on

the type of PDEs, proper preconditioners can be established for the PDEs or for the particular

discretized counterparts. Multigrid methods can be applied to the steady PDEs or the time-

dependent PDEs. In either case, a combination of these methods can still be viewed as pseudo

time-marching methods (but not necessarily of the original PDE that was under consideration).

11



However,if oneis not careful,numericalsolutionsotherthanthedesiredonecanbe obtained

in addition to spurious asymptotes due to the numerics. From here on the term "time-marching

approaches" is used loosely to include all of the above. It is remarked that multigrid methods

can be viewed as the (generalized) spatial counterpart of variable time step control in time
discretizations.

Methods in Solving the Nonlinear Algebraic EquationL From Implicit MethodJ: When

implicit time discretizations are used, one has to deal with solving systems of nonlinear

algebraic equations. Aside from the effect of the different methods to accelerate the conver-

gence process discussed previously, we need to know how different the dynamical behavior is

for the different procedures (e.g., iterative vs. non-iterative) in solving the resulting nonlinear

difference equations. See Yee & Sweby (1994, 1995a,b) and the next section for a discussion.

Mi4mateh in Implicit SchemeJ: It is standard practice in CFD to use a simplified implicit

operator (or mismatched implicit operators) to reduce CPUs and to increase efficiency. These

mismatched implicit schemes usually consist of the same explicit operator but different

simplified implicit operators. The implicit time integrator is usually of the LMM type. One

popular form of the the implicit operator is the so called "delta formulation" (Beam & Warming

1978). The advantage of the delta formulation is that if a steady state has been reached, the

numerical solution is independent of the time step. The original logic in constructing this

type of scheme is that the implicit operators act as a relaxation mechanism. However, from a

dynamical system standpoint, before a steady state is reached, the nonlinear difference equations

representing each of these simplified implicit operators are different from each other. They have

their own dynamics as a function of the time step, grid spacing and initial data. They also can

exhibit different types of nonlinear behavior if one is solving strongly nonlinear time-dependent

PDEs. Thus, even when steady states have been reached, they might not converge to the same

steady state due to the different forms of the implicit operator. In addition, even if they converge

to the same steady state, that steady state can still be spurious since the same explicit operator

is used. This might be due to the fact that spatial discretizations can introduce spurious steady

states. Consequently, these mismatched implicit operators can have different spurious dynamics

and/or different convergence rates for the entire solution procedure. Section 4.3 describes some

examples.

Nonlinear Schemea: It is well known that all of the TVD, total variation bounded (TVB)

and ENO schemes (see Yee (1989) or references cited therein) are nonlinear schemes in the

sense that the final algorithm is nonlinear even for the constant-coefficient linear PDE. These

types of schemes are known to have a slower convergence rate than classical shock-capturing

methods and can occasionally produce unphysical solutions for certain combinations of entropy

satisfying parameters and flux limiters (in spite of the fact that entropy satisfying TVD, TVB

and ENO schemes can suppress unphysical solutions). See Yee (1989) for a summary of the

subject. The second aspect of these nonlinear schemes is that even if the numerical method is

formally of more than first-order and if the approximation converges, the rate may still be only

first-order behind the shock (not just around the shock). This can happen for systems where one
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characteristicmay propagatepartof theerror at a shockinto thesmoothdomain.Engquist&
Sjogreen(1996)illustratethisphenomenawith examples.SeeSection4.2for adiscussion.The
third aspectof thesehigher-ordernonlinearschemesis their trueaccuracyawayfrom shocks.
SeeDonat(1994),Casper& Carpenter(1995)andSection5.4for a discussion.

Schemes That are Linear nJ. Nonlinear in At: The obvious classification of time-accurate

schemes for time-marching approaches to the steady state are explicit, implicit, and hybrid

explicit and implicit methods. Although many of the added numerical procedures, discussed

in the previous paragraph, used to help speed up convergence to steady states can apply to

both explicit and implicit methods, there are distinct differences between the two. Usually,

one tries to enlarge what is the equivalent of the linearized time step constraints imposed by

the explicit schemes for rapid convergence. On the other hand, if implicit methods are used,

unconditionally stable implicit methods are usually employed. Linearized stability constraints

are not the problem. Efficient methods for solving the nonlinear algebraic equations which

guarantee rapid convergence to the correct steady states are then the main concern.

A less commonly known classification of numerical schemes for time-marching approaches

is the identification of schemes that are linear or nonlinear in the time step (At) parameter

space when applied to nonlinear DEs. As mentioned before, all LMMs (explicit or implicit) are

linear in At and all multistage Runge-Kutta methods are nonlinear in At. Lax-Wendroff and

MacCormack type of non-separable full discretizations also are nonlinear in At. A desirable

property for a scheme that is linear in At is that, if the numerical solution converges, its steady-

state numerical solutions are independent of the time step. On the other hand, the accuracy of

the steady-state numerical solutions (also for time-accurate numerical solutions) depends on At

if the scheme is nonlinear in At. Certain of these types of schemes are more sensitive to At

than others. For example, Lax-Wendroff and MacCormack methods (MacCormack 1969) are

more sensitive than the Lerat variant (Lerat & Sides 1988). A less known property of schemes

that are nonlinear in At is that this type of scheme has an important bearing on the existence

of spurious steady-state numerical solutions due to time discretizations. Although schemes like

LMMs are immune from exhibiting spurious steady-state numerical solutions, as seen in Yee

& Sweby (1994, 1995a,b), a wealth of surprisingly nonlinear behavior of implicit LMMs that

had not been observed before were uncovered by the dynamical approach. See the next section

for a review.

Adaptine Time Step Based on Local Error Control: It is a standard practice in CFD to use

"local time step" (varied from grid point to grid point using the same CFL) for nonuniform

grids. However, except in finite element methods, adaptive time step based on local error

control is rarely use in CFD. Adaptive time step is built in for standard ODE solver computer

packages (Butcher 1987). It enjoyed much success in controlling accuracy and stability for

transient (time-accurate) computations. The issue is to what extent does this adaptive local

error control confer global properties in long time integration of time-dependent PDEs? Can

one construct similar error control that has guaranteed and rapid convergence to the correct

steady-state numerical solutions in the time-marching approaches for time-dependent PDEs?

13



Nonunique Steady-State Solutions of Nonlinear DEs vs. Spurious Asymptotes: The phe-

nomenon of generating spurious steady-state numerical solutions (or other spurious asymptotes)

by certain numerical schemes is often confused with the nonuniqueness (or multiple steady

states) of the governing equation. In fact, the existence of nonunique steady-state solutions of

the continuum can complicate the numerics tremendously (e.g., the basins of attraction -- which

initial data lead to which asymptote) and is independent of the occurrence of spurious asymp-

totes of the associated scheme. But, of course, a solid background in the theory of nonlinear

ODEs and PDEs and their dynamical behavior is a prerequisite in the study of the dynamics

of numerical methods for nonlinear PDEs. A full understanding of the subject can shed some

light on the controversy about the "true" existence of multiple steady-state solutions through

numerical experiments for certain flow types of the Euler and/or Navier-Stokes equations.

HI. Elementary Examples

This section reviews the fundamentals of and illustrates with elementary examples, the

spurious behavior of commonly used time discretizations in CFD. Except for Section 3.6,

details of these examples can be found in our earlier papers.

3.1. Preliminaries

Consider an autonomous nonlinear ODE of the form

du

_- = aS(u), (3.1)

where a is a parameter and ,.q(u) is nonlinear in u. Autonomous here means that t does not

appear explicitly in the function S. For simplicity of discussion, we consider only autonomous

ODEs where a is linear in (3.1); i.e., a does not appear explicitly in ,,q.

A fixed point u* of an autonomous system (3.1) is a constant solution of (3.1); that is

S(u') = 0. (3.2)

We remark that the terms "equilibrium points", "critical points", "singular points", "sta-

tionary points", "asymptotic solutions" (we are excluding periodic solutions for the current

definition), "steady-state solutions" and "fixed points" are sometimes used with slightly

different meanings in the literature, for example, in bifurcation theory. However, for the current

discussion and for the majority of the nonlinear dynamics literature, these terms are used

interchangeably. Note that certain researchers reserve the term "fixed point" for discrete maps

(difference equations) only.

Consider a nonlinear discrete map from the finite discretization of (3.1)
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u ''+z "- u n + D(u",r), (3.3)

where r = aAt and D(u n, r) is linear or nonlinear in r depending on the numerical scheme.

Here the analysis is similar if (3.3) involves more than two time levels. Examples to illustrate

the dependence on the numerical schemes for cases where D is linear or nonlinear in the

parameter space will be given in a subsequent section.

A fixed point u* of (3.3) (or fixed point of period 1) is defined by u n+z = u", or

i°e°,

u" = u" + D(u',r), (3.4a)

D(u',r) =0. (3.4b)

One can also define a fixed point of period p (or periodic solution of period p), where p is a

positive integer by requiring that u '_+p = u n or

u*=EP(u*,, ") but u*#Et'(u*,r) for 0<k<p. (3.5)

Here, EP(u *, r) means that we apply the difference operator E p times, where E(u", r) =

u" + D(u", r). For example, a fixed point of period 2 means u "+2 = u" or

u" = E(E(u',,)). (3.6)
In the context of discrete systems, the term "fixed point" without indicating the period

means "fixed point of period 1" or the steady-state solution of (3.3). Interchangeably, we also

use the term asymptote to mean a fixed point of any period.

In order to illustrate the basic idea, the simplest form of the Ricatti ODE, i.e., the logistic

ODE with

du

_- = e_S(u) = au(1 -- u)

is considered. For this ODE, the exact solution is

(3.7a)

tl 0

u(t) = uO + (1 - u °)e-'* '

where u ° is the initial condition. The fixed points of the

u*(1 - u*) = 0; ithas two fixed points u* = 1 and u* = 0.

To study the stability of these fixed points, we perturb the fixed point with a disturbance _,

and obtain the perturbed equation

d._ _ o_S(u* -I- _¢). (3.8)
dt

(3.7b)

logistic equation are roots of
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Next, S(u* + t_) can be expanded in a Taylor series around u*, so that

1 • a ]at -- _ s(.') + s=(,,')_ + _s==(,, )_ +... , (3.0)

where S,,(u') = dSa-ff1,,-" Stability can be detected by examining a small neighborhood of the

fixed point provided that, for a given a, u* is a hyperbolic point (Seydel 1988) (i.e., if the

real part ofaS,(u*) ¢ 0). Under this condition _ can be assumed small, its successive powers

(2, {s, ... can normally be neglected and the following linear perturbed equation is obtained

_-- = ,,S=(u')_. (3.ZO)
dt

The fixed point u* is asymptotically stable if aS,(u*) < 0 whereas u* is unstable if

aS=(u*) > 0. If aS=(u*) = 0, a higher order perturbation is necessary. If u* is not a

hyperbolic point, the behavior of (3.10) does not infer the behavior of the original unperturbed

equation.

For the logistic ODE, the fixed points are hyperbolic. Thus the linearized analysis suffices

(i.e., the original equation has the same local behavior as the perturbed equation (3.10)). If we

perturb the logistic equation around the fixed point with a > 0, we find that u* = 1 is stable

and u* = 0 is unstable. It is well known that the global asymptotic solution behavior of the

logistic ODE is that for any uo > 0, the solution will eventually tend to u* = 1. Figure 3.1

shows the asymptotic solution behavior of the logistic ODE.

Now, let us look at three of the well known schemes for IVPs of ODEs. These are

explicit Euler (Euler or forward Euler), leapfrog and Adams-Bashforth. For the ODE (3.1), the

dynamical behavior of their corresponding discrete maps is well established. The explicit Euler

method is given by

,,"+' = ,," + ,s(,,"), (3.11)

and after a linear transformation it is the well known logistic map (Hoppensteadt 1993). The

leapfrog method can be written as

."+'= ,,"-' + 2,s(,,"), (3.1=)

and it is a form of the Henon map (Devaney 1987). The Adams-Bashforth method yields

."+' = ." + _ 3s(u")- s(u "-1 , (3.13)

again a variant of the Henon map that has been discussed by Pruffer (1985) in detail.

We can determine fixed points of the discrete maps (3.11)-(3.13) and their stability properties

in a manner similar to that for the ODE. It turns out that all three of the discrete maps have the

same fixed points as the ODE (3.1) --- a desired property which is important for obtaining the
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correct steadystatesof nonlinearDEs numerically. An examinationof (3.11)-(3.13)reveals
that thediscretizedparameterr appearslinearly in thesediscretemaps.As will be seenin the
next section,anecessaryconditionfor theoccurrenceof spurioussteadystatesby anyscheme
is that the discretizedparametershouldappearnonlinearly in the underlyingdiscretemap.
Consequentlytheexistenceof spurioussteadystatesis not possible for (3.1 I)-(3.13).

The corresponding linear perturbed equation for the discrete map (3.3), found by substituting

u" = u* + _'_ in (3.3) and ignoring terms higher than _", is

_,+1 = _"[I + AtD_(u*,At)]. (3.14)

Here the parameter a of the ODE has been absorbed in the parameter At based on the

assumption that a does not appear explicitly in S(u). Depending on the scheme, D(u", At)

might be nonlinear in At. If nonlinearity in the parameter space At is introduced into the

discretized counterpart, it increases the possibility that the dynamics of numerics deviates from

the dynamics of the continuum.

For stability we require

I1 + AtD,(u*,At)[ < 1. (3.15)

Again, for 11 + AtDu(u °, At)[ = 1, a higher order perturbation is necessary. For a fixed point

of period p the corresponding linear perturbed equation and stability criterion are

C+, = t t), (3.16a)

and

IE (.°,At)I < 1, (3.16b)

with

(3.16¢)

For S(u) = u(1 - u), the stability of the stable fixed points of period 1 and 2 for discrete

maps (3.11)-(3.13) with r = nAt are

Explicit Euler:

Leapfrog:

u°=l

period 2

stable if 0 < r < 2

stable if 2 < r < x/_

u ° = 1 unstable for all r > 0

chaotic solutions exist for all r no matter how small
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Adams-Bashforth:

stableif0<r < 1

stableif 1 < r < x/_.

Figure 3.2a shows the stable fixed point diagramof period 1,2,4, 8 obtained for the

explicit Euler scheme by solving numerically the roots of (3.11) (by setting u n+1 = u") for

S(u) = u(1 - u). The r axis is divided into 1000 equal intervals. The numeric labeling of the

branches denotes their period. The subscript "E" on the period 1 branch indicates the stable

fixed point of the DE. From here on, r = nAt where a = a in all of the plots. The change of

notation inside the plots is due to the plotting package.

All of these three examples share a common property of not exhibiting spurious steady

states. Two of these three examples serve to illustrate that operating with a time step beyond the

linearized stability limit of the stable fixed points of the nonlinear ODEs does not always result

in a divergent solution; spurious asymptotes of higher period can occur. This is in contrast to

the ODE solution, where only a single stable asymptotic value u" = 1 exists for any a > 0 and

any initial data u ° > 0. The spurious asymptotes, regardless of the period, stable or unstable,

are solutions in their own right of the discrete maps resulting from a finite discretization of the
ODE.

3.2. Spurious Asymptotic Numerical Solutions for Constant Step Sizes

For the previous section we purposely picked the type of schemes that do not exhibit spurious

fixed points, but allow spurious fixed points of period higher than 1. In this section numerical

methods axe purposely chosen so that the discretized parameter appears nonlinearly in the

underlying discrete maps. Consequently, existence of spurious steady-state numerical solutions

in these examples is possible.

3.2.1. Explicit Methods

Consider two second- and third-order Runge-Kutta schemes, namely, the modified Euler

(R-K 2) and the improved Euler (R-K 2), Heun (R-K 3), Kutta (R-K 3), the fourth-order

Runge-Kutta method ('R-K 4), and two predictor-corrector methods (P-C 2 and P-C 3) (Lambert

1973) of the forms

Modified Euler (R-K 2) method:

(u "+l=u"+rS u"+_S , S"=S(u"), (3.17)
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Improved Euler (R-K 2) method:

u"+ l=u '_+_ S"

Heun (R-K 3) method:

Kutta (R-K 3) method:

R-K 4 method:

r( )u '_+I = u" + _- kl + 3k_

_I --" Sn

(2,)ks=S u"+--_-k2 ,

"()u n+l=u r'+-_ kl +4k2+ks

k 1 _ S n

(')k2 = S u" + _kl

k, = , (u" - r'k, + 2_'k, ) ,

(3.18)

(3.19)

(3.20)

u "`+l=u "=+ _ kl+2k=+2ks+k,

hi = S"

(")k==S u"+_k2

k,= S (u" + ,'k=).

(3.21)
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Predictor-corrector for m = 2, 3 (P-C 2 & P-C 3):

u (°) = u" + rS"

"I ]u (k+_) = u" + _ S" + S (hI ,

"I ]u ''+l = u" + _ S" + S ('''-z) .

k = 0,1,...,m- 1

(3.22)

3.2.2. Fixed Point Diagrams

Using the same procedures as before, one can obtain the fixed points for each of the above

schemes (3.17) - (3.22). Figures 3.2b - 3.2f show the stable fixed point diagrams of period

1,2,4 and 8 for selected schemes for S(u) = u(1 - u). The unstable fixed points of any period

are not plotted. See Yee et al. (1991) for the unstable fixed point diagrams. Some of the fixed

points of lower period were obtained by closed form analytic solution and/or by a symbolic

manipulator such as MAPLE (1988) to check against the computed fixed point. The majority

were computed numerically. The stability of these fixed points was examined by checking the

discretized form of the appropriate stability conditions. The domain is chosen so that it covers

the most interesting part of the scheme and ODE combinations, and is divided into 1000 equal

intervals. In other words, spurious asymptotes may occur in other parts of the domain as well.

The numeric labeling of the branches denotes their period, although some labels for period 4

and 8 are omitted due to the size of the labeling areas. Again, the subscript "E" on the main

period one branch indicates the stable fixed point of the DE while the subscript "S" indicates

the spurious stable fixed points introduced by the numerical scheme. Spurious fixed points of

period higher than one are obvious (since the ODEs under discussion only possess steady-state

solutions) and are not labeled with a subscript "S". Note that these diagrams, which for the

most part appear to consist of solid lines, actually consist of points, which are only apparent
in areas with high gradients.

To contrast the results, similar stable fixed point diagrams were also computed for the ODE

du

_-_ = au(1 - u)(b- u), 0 < b < 1, (3.23)

that is, for a cubic nonlinearity for S(u) : u(1 - u)(b- u). The stable fixed point for the ODE

(3.23) in this case is u ° = b and the unstable ones are u ° = 0 and u ° = 1. For any 0 < u ° < 1

and any a > 0, the solution will asymptotically approach the only stable asymptote of the ODE
U O _--- b.

By looking at the roots of the underlying discrete maps, it is readily realized that r appears

nonlinearly in these discrete maps. In fact, the maximum number of stable and unstable fixed
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points(realandcomplex)for eachof thestudiedschemes(3.17)-(3.22)variedfrom 4 to 16for
S(u) = u(1 - u) and 9 to 81 for S(u) = u(1 - u)(b - u), depending on the numerical method
and the r value. For certain r values, aside from the real steady states, these roots might be

unstable and/or complex, but not for others. Fig. 3.3 shows the stable fixed point diagram by

the modified Euler for four different values of b.

Aside from the striking difference in topography in the stable fixed point diagrams of the

above methods and ODE combinations, all of these diagrams (except the P-C 2 method) have

one common feature: they all exhibit stable spurious steady states, as well as spurious stable

fixed points of period higher than one. In the majority of cases, these occur for values of r

above the linearized stability limit of the true fixed point. But this is not always the case, as

is demonstrated in the modified Euler scheme applied to the logistic ODE (3.7) and (3.23) for

0 < b < 0.5, and the R-K 4 applied to the logistic ODE. For these two methods and ODE

combinations, stable spurious fixed points occur below the linearized stability limit. In some

of the instances, these spurious fixed points are outside the interval of the stable and unstable

fixed points of the ODEs. Others not only lie below the linearized stability limit but also in the

region between the fixed points of the DEs and so could be very easily achieved in practice.

For example, in Fig. 3.2b, the modified Euler scheme for the logistic ODE, the linearized

stability limit of period 1B is r = 2. But depending on the value of r, two stable fixed points

of period I (one is spurious) can exist at the same time for 0 < r < 1.236. For the R-K

4 method applied to the logistic DE, one can see from Fig. 3.2d that spurious steady states
which exist for 2.75 < r < 2.785 are below the linearized stability limit of the 1E branch. For

the modified Euler method applied to du/dt = au(1 - u)(b - u), it is interesting to see the

changing behavior of stable spurious steady states as the stable fixed point u ° = b is varied

between 0 and 0.5.

A unified analysis for the above for the standard explicit Runge-Kutta methods is reported in

Griffiths et al. (1992a). Tables 3.1 - 3.4, taken from Griffiths et al. (1992a), show the true and

spurious asymptotes of selected schemes. Some entries are marked with an asterisk to indicate

where stable fixed points are known to exist but no closed analytic form has yet been found.

Historically, Iserles (1988) was the In-st to show that while LMMs for solving ODEs possess

only the fixed points of the original DEs, popular Runge-Kutta methods may exhibit spurious

fixed points. Iserles et al. (1990) and Hairer et al. (1989) classified and gave guidelines

and theory on the types of Runge-Kutta methods that do not exhibit spurious period one or

period two fixed points. Humphries (I 991) showed that under appropriate assumptions if stable

spurious fixed points exist as the time-step approaches zero, then they must either approach

a true fixed point or become unbounded. Hence repeating the integration with a smaller step

size will ultimately make spurious behavior apparent. However, convergence in practical

calculations involves a f'mite time step At that is not small as the number of integrations n _ oo

rather than At _ 0, as n ---, oo. The work in Yee et al. (1991), Yee & Sweby (1994, 1995a,b),

and Lafon & Yee (1991, 1992), Sweby et al. (1990, 1995), Sweby & Yee (1991), and Griffiths

et al (1992) attempted to provide some of the global asymptotic behavior of time discretizations

when finite fixed but not extremely small At is used. As mentioned in Section II, constant
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stepsizealgorithmsarerelevantto manyapplicationsin CFD aswell as in otherscienceand
engineeringdisciplines. Thusa clearunderstandingof thedynamicsof constantstepsizesis
necessaryto isolatesomeof thesourcesandcuresof numericaluncertaintiesin computational
sciences.

3.3. Bifurcation Diagrams

This section discusses another method for obtaining the stable fixed point diagrams or

bifurcation diagrams before illustrating the symbiotic relationship between permissibility of

spurious steady states and initial data in fixed time step computations.

"F, ll" Bi_reation Diagram ("Complete Fized Point Diagram"): If one obtains the full

spectrum of these fixed points of any order as a function of the step size, the fixed point

diagram is sometimes referred to as the "full" bifurcation diagram. In other words, the "full"

bifurcation diagram exhibits the complete asymptotic solutions of the discretized counterparts

as a function of the discretized parameter P. In computing the "full" bifurcation diagram,

searching for the roots and testing for stability of highly complicated nonlinear algebraic

equations (for fixed points of higher period and/or complex nonlinear DEs combination) can

be expensive and might lead to inaccuracy. In certain instances, one might be able to obtain

the bifurcation diagram by some type of continuation method. The most popular one is called

the pseudo arclength continuation method and was devised by Keller (1977). However, the

majority of the continuation type methods require known start up solutions for each of the

main bifurcation branches before one can continue the solution along a specific main branch.

For problems with complicated bifurcation patterns, the arclength continuation method cannot

provide the complete bifurcation diagram without the known start up solutions. In fact, it is

usually not easy to locate even just one solution on each of these branches, especially if spurious
asymptotes exist.

Computed Bifurcation Diagram: A numerical approach in obtaining a "computed" bifurca-

tion diagram (not necessarily the full bifurcation diagram, as explained later) of the resulting

discretized counterpart is by iterations of the underlying discrete map. In other words, this type

of computed bifurcation diagram for the one-dimensional discrete map displays the iterated

solution u" vs. P after iterating the discrete map for a given number of iterations with a chosen

initial condition for each of the P parameter values. For the figures shown later, with a given

interval of P and a chosen initial condition, the P axis is divided into 500 equal spaces. In

each of the computations, the discrete maps were iterated with 600 preiterations (more or less

depending on the DE and scheme combinations) and the next 200 iterations were over plotted

in the same diagram for each of the 500 P values. The preiterations are necessary in order for

the solutions to settle to their asymptotic value. A high number of iterations are overlaid on the

same plot in order to detect periodic orbits (in this case periods of up to 200) or invariant sets.

The reader is reminded that with this method of computing the bifurcation diagrams, only the

stable branches axe obtained. The domains of the P and u" axes are chosen to coincide with

the stable fixed point diagrams shown previously. As explained later, even though all of these
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discretemapspossessperiodic solutionsof periodn for arbitrarily large n and stable chaotic

solutions, no attempt was made to compute all of the spurious orbits of any order or chaotic

solutions. The purpose of the present discussion is to show the spurious behavior and these

computations suffice to serve the purpose.

EzarapleJ: Figure 3.4 shows the bifurcation diagram of the Euler scheme applied to the logistic

DE with an initial condition u ° > 0. It is of interest to know that in this case the bifurcation

diagram looks practically the same for any u ° > 0. This is due to the fact that no spurious

fixed points exist for r _< 2 and no spurious asymptotes of low period exist for r < 2.627. One

quickly observes that using the arclength continuation method for this discrete map is the most

efficient way to obtain its bifurcation diagram. However, this is not the case for other methods

to be discussed later. Comparing the bifurcation diagram with Fig. 3.2a, one can see that if

we had computed all of the fixed points of period up to 200 for Fig. 3.2a, the resulting fixed

point diagram would look the same as the corresponding bifurcation diagram (assuming 600

iterations of the logistic map are sufficient to obtain the converged stable asymptotes of period

up to 200 and the chosen initial data are appropriate to cover the basins of all of the periods in

question). The numeric labeling of the branches in the bifurcation diagram denote their period,

with only the essential ones labeled for identification purposes.

The noise appearing on the 12 branch near the bifurcation point r = 2 of the linearized

stability limit of the fixed point u ° ----1 indicates that 600 iterations of the logistic map are not

sufficient to obtained the converged stable asymptotes. This phenomenon is common to other

bifurcation points of higher periods as well as the rest of the corresponding bifurcation for the

studied schemes. See Yee et al. (1991), and Yee & Sweby (1994, 1995a,b) for additional

details. In fact, the slow convergence of using a time step that is near the linearized stability of

the scheme (bifurcation poin0 might be due to this fact.

It is remarked that the explicit Euler applied to the logistic ODE resulted in the famous

logistic map. Unlike the underlying logistic ODE, it is well known that the logistic map

possesses very rich dynamical behavior such as period-doubling (of period 2 n for any positive

n) cascades resulting in chaos (Feigenbaum, 1978). One can find Fig. 3.4 appearing in

most of the elementary dynamical systems text books. The exact.values of r for all of the

period-doubling bifurcation points and chaotic windows (intervals of r) are known and were

discovered by Feigenbaum in the late 1970's. Interested readers should consult these elementary

text books for details. In other words, one can obtain the analytical (exact) behavior of the

spurious asymptotes and numerical (spurious) chaos of the logistic map. The next section

explains why using a single initial datum in computing the bifurcation diagrams for schemes

that exhibit spurious asymptotes does not necessarily coincide with the fixed point diagram (or

full bifurcation diagram). It is interesting to note that the corresponding bifurcation diagrams of

the respective discrete maps produced by the remaining studied schemes consist of unions of

"logistic-map-like" bifurcations and/or "inverted logistic-map-like" bifurcations with similar

yet slightly complicated period-doubling cascades resulting in chaos. See Section 3.4 for

additional discussions.
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TvpeJ of Bifuw.ations: In all of the fixed point diagrams shown previously, the majority of

the bifurcation phenomena can be divided into three kinds; these are flip, supercritical and

transcritical bifurcations (Seydel 1988). Figure 3.5 shows examples of these three types of

bifurcation for the logistic ODE using the modified Euler, improved Euler and R-K 4. Figure

3.5 also shows a comparison of the stable and unstable fixed points of periods 1 and 2. Although

the modified Euler and the R-K 4 experience a transcritical bifurcation, they have different
characteristics.

For the bifurcation of the first kind, the paths (spurious or otherwise) resemble period

doubling bifurcations (flip bifurcation) similar to the logistic map. See Fig. 3.2a (for r = 2) and

Fig. 3.2e (for r = 2) for examples. The second kind is the steady or supercritical bifurcation. It

occurs, most often, at the main branch 18, with the spurious paths branching from the correct

fixed point as it reaches the linearized stability limit, and quite often even bifurcating more

than once, as r increases still further before the onset of period doubling bifurcations. See

Fig.3.2c (for 1, = 2) and Fig. 3.2f (for r = 2) for examples. Using the P-C 3 method to solve

(3.7) more than one consecutive steady bifurcation occurs before period doubling bifurcations.

Follow the ls labels on Fig. 3.2f. Although figures are not shown for ODE (3.23) with b = 0.5,

the improved Euler experiences two consecutive steady bifurcations before period doubling

bifurcation occurs (see original paper for details). Using the P-C 3 method to solve (3.23), four

consecutive steady bifurcations occur before period doubling bifurcations. The modified Euler

and R-K 4 methods, however, experience only one steady bifurcation before period doubling
bifurcations occur.

The third kind of bifurcation again occurs most often at the main branch 1E. The spurious

paths near the linearized stability limit of 1E experience a transcritical bifurcation. See Fig.

3.2b (for r = 2), Fig. 3.2d (for r near 2.75), Fig. 3.2f (for r near 3.4) and Fig. 3.3 (follow the 1E

branch) for examples. Notice that the occurrence of transcritical and supercritical bifurcations

is not limited to the main branch 1E. See Fig. 3.3 for examples. At the stability limit of the true

fixed point, only the modified Euler and R-K 4 undergo transcritical bifurcation.

As can be seen, the occurrence of flip and supercritical bifurcations is more common. In fact,

most of the bifurcation points shown in previous figures are of these types. The other commonly

occurring bifurcation phenomenon is the subcritical bifurcation which was not observed in our

two chosen S(u) functions. With a slight change in the form of our cubic function S(u), a

subcritical bifurcation can be achieved (Seydel 1988). See elementary text books on bifurcations

of discrete maps (Seydel 1988) for a discussion of these four types of bifurcation phenomena.

The consequence of the latter three bifurcation behaviors is that bifurcation diagrams computed

from a single initial condition u ° will appear to have missing sections of spurious branches,

or even seem to jump between branches. This is entirely due to the existence of spurious

asymptotes of some period or more than one period, and its dependence on the initial data.

Slow Convergence Near Bifurcation Points: As discussed previously, the number of itera-

tions for the computed asymptotes that are near or at the bifurcation point can be orders of

magnitude higher than away from the bifurcation points. In fact, depending on the type of
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bifurcationand initial data, one might experience slow convergence using a time step that is

near the linearized stability of the scheme (bifurcation points of the above four types). See Yee

& Sweby (1994, 1995a,b) for some examples. In the worst case scenario, if the bifurcation is of

the transcritical or subcritical type and the time step is within that range, the numerical solution

can get trapped in a spurious steady state or a spurious limit cycle, causing nonconvergence of

the numerical solution. Due to the fact that if the spurious steady state or spurious limit cycle

is very close to the true steady state with a time step that is near the bifurcation point, it is not

easy to distinguish it from a pure slow convergence issue or a spurious issue.

3.4. Strong Dependence of Solutions on Initial Data (Numerical Basins of Attraction)

Computing Bileureation Diagrams Using A Single Initial Datum: Figures 3.6a - 3.6c show

the bifurcation diagram by the modified Euler method for the logistic ODE with three different

starting initial conditions (I.C.). In contrast to the explicit Euler method as shown in Fig. 3.4,

none of these diagrams look alike. One can see the influence and the strong dependence of

the asymptotic solutions on the initial data. For certain initial data and At value combinations,

spurious dynamics can be avoided. Yet for other combinations, one can never get to the correct

steady state. In other words, it is possible that for the same At but two different initial data or

vice versa, the scheme can converge to two different distinct numerical solutions of which one

or neither of them is the true solution of the underlying DE. Thus in a situation where there is

no prior information about the exact steady-state solution, and where a time-marching approach

is used to obtain the steady-state numerical solution when initial data are not known, a stable

spurious steady-state could be computed and mistaken for the correct steady-state solution.

Figure 3.6d shows the corresponding "full" bifurcation diagram, their earlier stages resembling

the fixed point diagram 3.2b which showed only fixed points up to period 8. See Yee et al.

( 1991) for an example that overplotting a number of initial data, but not the appropriate ones,

would not be sufficient to cover all of the essential spurious branches. The strong dependence

of solutions on initial data is evident from the various examples in which this type of behavior

is present. It is remarked that if one uses the pseudo arclength continuation type method without

solving for the roots of the spurious fixed point, one only knows one starting solution (i.e., the

exact steady states of these two ODEs). The continuation method, in this case, only produces

the branch of the bifurcation diagram originating from the If branch of the curve.

Computed Full Bifnreation Diagram: In order to compute a "full" bifurcation diagram using

this numerical approach, we must overplot all of the individual bifurcation diagrams of existing

asymptotes of any period and chaotic attractors obtained by using the entire domain of u values

as starting initial data. Thus, a better method in numerically approximating the full bifurcation

diagram is dividing the domain of interest of the u axis into equal increments and using these u

values as initial data. The "full" bifurcation diagram is obtained by simply overplotting all of

these individual diagrams on one. Figs. 3.7 and 3.8 show the "full" bifurcation diagrams for the

corresponding fixed point diagrams shown previously. Note that the full bifurcation computed

this way might miss some of the windows of bifurcations that occur inside the intervals of the
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adjacentr and/orthe initial data values.

It is noted that for the cases when one knows the bifurcation pattern of a specific discrete map,

the actual number of the initial data points used for that full bifurcation diagram computations

do not have to completely cover the entire domain of u as long as these initial data cover all

of the basins of attraction of the asymptotes (which initial data lead to which asymptotes). See

next section for def'mition and discussion. That is, at least one initial data point is used from

each of the basins of the asymptotes. No attempt has been made to compute the complete full

bifurcation diagram, since this is very costly and involves a complete picture of the existing

asymptotes of any period and chaotic attractors for the domain of interest in question. See

remarks in Section 3.2 on computed bifurcation diagrams for explanation. Here, we use the

term "full bifurcation diagram" to mean "computed bifurcation diagram with sufficient initial

data to cover the essential lower order periods". Without loss of generality, from here on we

use the word bifurcation diagram to mean the computed (and approximated) full bifurcation

diagram.

From Figs. 3.7 and 3.8, one can conclude that all of the studied explicit methods undergo

"'period doubling bifurcations" leading to the "logistic-map-type bifurcations". The term

"logistic-map-type bifurcations" here means that the behavior and shape of the bifurcations

resemble the logistic map as shown in Fig. 3.4. The ranges of the r values in which logistic-

map-type bifurcations occur are not restricted to the 1B branch of the bifurcation diagram. The

birth of the logistic-map-type bifurcations can occur below or beyond the linearized stability

limit of the true steady state of the governing equation. To aid the readers, Figs. 3.7 and 3.8

indicate the major stable fixed points of periods up to 4. Basically (not restricted to), each

of the ls branches of the bifurcations are logistic-map-type. For example, the modified Euler

experiences two period doubling bifurcations for the ODE (3.7). For the ODE (3.23), the

modified Euler experiences at least two to three period doubling bifurcations, depending on the

b values. For other methods, the situation is slightly more complicated.

Besides the regular logistic-map-type bifurcations, some of these methods undergo the so

called "inverted logistic-map-type" of period doubling bifurcations. The shape of this type

of bifurcation resembles the reverse image of Fig. 3.4. See, for examples, Fig. 3.7b for

1.69 < r < 1.67 and Fig. 3.7c for 3.15 < r < 3.3.

The above example explains the role of initial data in the generation of spurious steady-

state numerical solutions, stable and unstable spurious numerical chaos and other asymptotes.

Section 3.5 illustrates the role of initial data in the permissibility of stabilizing unstable

steady states of the governing equation and the introduction of stable and unstable spurious

numerical chaos and other asymptotes by implicit LMMs. Next, how basins of attraction can

complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of

time discretizations for nonlinear DEs will be illustrated.

"Ezaet" Basin of Attraction tTs. "Numerical" BaJin of Attraction: The basin of attraction

of an asymptote (for the DEs or their discretized counterparts) is a set of all initial data
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asymptoticallyapproachingthat asymptote.We usetheterms"exact" basinof attraction and
"numerical" basin of attraction to mean the basin of attraction of the DE and basin of attraction

of the underlying discretized counterpart. Although all of the numerical basins of attraction

shown later are obtained numerically, the term ' 'numerical basin of attraction" here pertains to

the true basins of attraction of all of the asymptotes for the underlying discrete map.

For the logistic ODE, the "exact" basin of attraction for the only stable fixed point u ° = 1

is the entire positive plane for all values ofa > 0. The basin of attraction for the ODE (3.23) for

the stable fixed point u ° = b is 0 < u < 1 for all a > 0, 0 < b < 1. However, the situation for

the corresponding numerical basins of attraction for the various schemes is more complicated

since each asymptote, stable or unstable, spurious or otherwise, possesses its own numerical

basin of attraction. Intuitively, in the presence of stable and unstable spurious asymptotes,

the basins of the true stable and unstable steady states (and asymptotes if they exist) can be

separated by the numerical basins of attraction of the stable and unstable spurious asymptotes.

Consequently, what is part of the true basin of a particular fixed point of the governing equation

might become part of the basin of the spurious asymptotes. For implicit methods that can

stabilize unstable steady states of the governing equation (to be discussed later), the basin

of attraction associated with the particular stabilizing steady state can consist of the union of

part of basins from other true asymptotes. In other words, the allowable initial data of the

numerical method associated with a particular asymptote of the DE can experience enlargement

or contraction, and can become null or consist of a union of disjoint regions. These regions can

be fractal like. Therefore, keeping track of which initial data lead to which asymptotes (exact or

spurious) of the underlying discrete maps becomes more complicated as the number of spurious

asymptotes increases.

On the other hand, the computed bifurcation diagram cannot distinguish the types of

bifurcation and the periodicity of the spurious fixed points of any order. With the numerical

basins of attraction and their respective bifurcation diagrams superimposed on the same plot,

the type of bifurcation and which initial data lead to which stable asymptotes become apparent.

In order to obtain the corresponding numerical basins of attraction for the schemes discussed

above, one immediately realizes that, in most cases, a numerical approach is the only recourse

until more theoretical tools for searching for the basin boundaries of general discrete maps

become available. We would like to add that there are isolated theories or approximate methods

to locate some basin boundaries for simple discrete maps or special classes of discrete maps.

Even in this case, these methods are neither practical nor are there fixed guidelines for the actual

implementation of discrete maps for more complex ones of similar type. See Hsu (1987) for an

approximate method and Friedman (1995) for numerical algorithms which compute connecting

orbits.

Computin9 Numerical BaJir_J of Attraction on the Connection Machine: The nature of

this type of computation, especially for systems of nonlinear ODEs or PDEs, requires the

performance of a very large number of simulations with different initial data; this can be

achieved efficiently by the use of the highly parallel Connection Machine (CM-2 or CM-5)

or the IBM SP2 machine whereby each processor could represent a single initial datum and
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therebyall thecomputationscanbedonein paralleltoproducedetailedglobalstabilitybehavior
andtheresultingbasinsof attraction.With theaid of highly parallelConnectionMachines,we
wereableto detecta wealthof thedetailednonlinearbehaviorof theseschemesfor systemsof
ODEsandPDEswhich would havebeenoverlookedhad isolatedinitial databeenchosenon
theCrayor otherserialor vectormachine.

Figure(3.9)showsthebifurcationdiagramwith numericalbasinsof attractionsuperimposed
for the logistic ODE for four Runge-Kuttamethods.(Eventhoughonemightnot needto usea
highlyparallelmachineto computethebasinsof attractionfor thescalarODE,neverthelessthis
figurewascomputedon theCM-5 requiringonly afew minutesfor eachplot). Themajorwork
ontheCM-5 codingis on theefficienthandlingof datafor plotting.Thesameplotswouldhave
requiredat leastanorderof magnitudemore CPU time on a serial or vector machine. To obtain

a bifurcation diagram with numerical basins of attraction superimposed using the CM-5, the

preselected domain of initial data and the preselected range of the At parameter are divided into

512 equal increments. For the bifurcation part of the computations, the discretized equations

are, in general, preiterated 3000 steps for each initial datum and At before the next 1000

iterations (more or less depending on the problem and scheme) are plotted. The preiterations

are necessary in order for the trajectories to settle to their asymptotic value. The high number

of iterations are plotted (overlaid on the same plot) to detect periodic solutions. The bifurcation

curves appear on the figures as white curves, white dots and dense white dots. While computing

the bifurcation diagrams it is possible to overlay basins of attraction for each value of At used.

For the numerical basins of attraction part of the computations, with each value of At used,

we keep track where each initial datum asymptotically approaches, and color code each basin

(appearing as a multi-color vertical line) according to the individual asymptotes. Black regions

denote basins of divergent solutions. While efforts were made to match color coding associated

with a particular asymptote of adjacent multi-color vertical lines on the bifurcation diagram

(i.e., from one At to the next), it was not always practical or possible. Care must therefore be

taken when interpreting these overlays. In an idealized situation it is best if we also know the

critical value of At for the onset of unstable spurious asymptotes. However, with the current

method of detecting the bifurcation curve only the stable ones are detected. For example, a

steady bifurcation would break the domain immediately after the bifurcation point into two

different color domains immediately after the bifurcation point.

Ezample,_: Any initial data residing in the green region in Fig. 3.9 for the modified Euler

method belongs to the numerical basin of attraction of the spurious (stable) branch emanating

from u = 3 and r = 1. Thus, if the initial data is inside the green region, the solution can never

converge to the exact steady state using even a small fixed but finite At (all below the linearized

stability limit of the scheme). Although not shown, we have computed the bifurcation diagram

with wider ranges of r and initial data. In fact, the green region actually extends upward as

r decreases below 1. Thus for a small range of r values very near zero, the entire domain is

divided into two basins (same as the ODE). As r increases, the domain can divide into more

than two basins (instead of two for the ODE). But of course higher period spurious fixed points

exist for other ranges of r and more basins axe created within the same u domain. For r near
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2 (i.e., near the linearized stability limit of the true steady state u* = 1, the bifurcation is

transcritical. Using an r value slightly bigger than 2 will lead to the spurious steady state until

r increases beyond 3.236. Consequently, there are large ranges of r below and beyond the

linearized stability limit of the true steady state for which spurious dynamics occur. Observe

the size and shape of these basins as r varies. The majority of these basin boundaries are fractal

like.

A similar situation exists for the R-K 4 method (Fig. 3.9), except that now the numerical

basins of attraction of the spurious fixed points occur very near the linearized stability limit

of the scheme, with a small portion occurring below the linearized stability limit. Although

both the modified Euler and the R-K 4 methods experience a transcritical bifurcation for the

logistic ODE. The transcritical bifurcation for the R-K 4 is more interesting. See Fig. 3.5 for the

distinction between the two transcritical bifurcations. In contrast to the improved Euler method,

the green region represents the numerical basin of attraction of the upper spurious branch of

the transcritical bifurcation. The bifurcation curve directly below it with the corresponding red

portion is the basin of the other spurious branch. With this way of color coding the basins of

attraction, one can readily see (from the plots) that for the logistic ODE (3.7), the improved

Euler method experience one steady bifurcations before period doubling bifurcation occurs.

The modified Euler and R-K 4 methods, however, experience a transcritical bifurcation before

period doubling bifurcations occur. The Kutta method experiences period doubling bifurcation

at the linearized stability limit. One way to detect the steady bifurcation from these plots is to

look for a separate color associated with each branch of the associated bifurcation. A similar

interpretation holds for certain type of transcritical bifurcation. See R-K 4 in Fig. 3.9. One

way to detect the period doubling bifurcation from these plots is to look for no change in

colors associated with each branch of the associated bifurcation. For subcritical bifurcation, it

is slightly more complicated.

The above discussion shows the interplay between initial data, step size and permissibility of

spurious asymptotes. It indicates that it is not just the occurrence of stable spurious numerical

solutions that causes difficulty. Indeed such cases may be easier to detect. These spurious

features of the discretizations often occur but are unstable; i.e., they do not appear as an actual

(spurious) solution because one usually cannot obtain an unstable asymptotic solution by mere

forward time integration. However, far from being benign, they can have severe detrimental

effects on the allowable initial data of the true solution for the particular method, hence causing

slow convergence or possibly even nonconvergence from a given set of initial data, even though

the data might be physically relevant.

Due to space limitations, interested readers are referred to Yee & Sweby (1994, 1995a)

for results for four 2 × 9. systems of nonlinear model ODEs. Classification of fixed points

of systems of equations are more involved than the scalar case. See elementary dynamical

systems text books for details. The corresponding bifurcation diagrams and numerical basins

of attraction of these schemes are even more involved. New phenomena exist that are absent

from the scalar case. For example, in the presence of multiple steady states, even for explicit

methods, depending on the step size and initial data combination, the associated numerical
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basinsof attractionfor atruesteadystatemightexperienceanenlargementof their basinsatthe
expenseof a contractionof theotherasymptotes.For the scalarcase,this is only possiblefor
superstableimplicit methods(seenext section).SeeYee& Sweby(1994, 1995a,b)for more
details.Anotherexampleis that thefixed pointcanchangetypeaswell asstability (e.g.,from
asaddlepoint to a stableor unstablenode).It is remarkedthatfor systemsbeyond3 × 3, it is

impossible to conduct a detailed analysis as shown above.

3.5. Global Asymptotic Behavior of Superstable Implicit LMMs

This section reviews the superstable property of some implicit LMMs and summarizes their

global asymptotic nonlinear behavior using the dynamical approach. Recall that the underlying

discrete maps from using LMMs are linear in the discretized parameter At and they are exempt

from spurious steady states. As can be seen later, the combination of implicit LMMs and the

superstable property produce asymptotic behavior that is very different from schemes that were

studied in the previous section. One distinct property of these types of schemes is that they

can stabilize unstable steady states of the governing equation. Another property is that the

numerical basins of attraction of the stable steady state can include regions of the basins of the

unstable steady states of the go_,,erning equation.

3.5.1. Super-stability Property

Dahlquist et al. (1982) first defined super-stability in ODE solvers to mean the region

of numerical stability that encloses regions of physical instability of the true solution of the

ODE. Dieci & Estep (1991) subsequently gave a broader definition as one in which an ODE

solver does not detect that the underlying solution is physically unstable. They observed that

super-stability can occur also when the ODE solver is not super-stable in terms of Dahlquist

et al. They concluded that the key factor which determines the occurrence of super-stability

is the iterative solution process for the nonlinear algebraic equations. They indicated that the

iterative solution process has its own dynamics, which might be in conflict (as for Newton's

method) with the dynamics of the problem. They also indicated that super-stability can arise

because of this fact. Their viewpoint is that the numerical scheme and the methods for solving

the nonlinear algebraic equations should be considered as a unit. Neglecting this latter aspect

and basing step size selection purely on accuracy considerations leads to faulty analysis. They

believe that error control strategies for stiff initial value problems ought to be redesigned to take

into account stability information of the continuous problem.

In Yee & Sweby (1994, 1995a,b) we exploited the global asymptotic behavior of some of

the superstable implicit LMMs for constant step sizes. We concentrated on four of the typical

unconditionally stable implicit LMMs. These are backward Euler, trapezoidal rule, midpoint

implicit, and three-point backward differentiation (BDF), each with noniterative (linearized

implicit), simple, Newton and modified Newton iterative procedures for solving the resulting

nonlinear algebraic equations. A semi-implicit predictor method of Gresho (1996) also was
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investigated.

We believe that some of the phenomena observed in our study were not observed by Dieci

& Estep (1991) or by Iserles (1988). Based on our study, we now give a loose definition of an

implicit time discretization as having a super-stability property if, within the linearized stability

limit for a combination of initial data and time step (fixed) or starting time step (using standard

variable time step control based on accuracy requirements), the scheme stabilizes unstable

steady states of the governing equations in addition to having the property of Dieci and Estep.

The definition includes the procedures in solving the nonlinear algebraic equations. This loose

definition fits the behavior that was observed in Yee & Sweby (1994, 1995a,b), while at the

same time it fits the framework of dynamics of numerics in time-marching approaches in CFD.

This is not a re-definition of Dieci and Estep, but rather a clarification of their definition when

asymptotic numerical solutions of the governing equations are desired. In this case, superstable

schemes might have the property of a numerical basin of attraction of the true steady state that

is larger than the underlying exact basin of attraction. As can be seen in Yee & Sweby (1994,

1995a,b), the trapezoidal method is more likely to exhibit this property than the other three

LMMs. The stabilization of unstable steady states by LMMs was also observed by Salas et al.

(1986), Embid et al. (1984), Burton & Sweby (1995) and Poliashenko (1995). Section 4.2.2

gives a summary of the work of Burton and Sweby.

3.5.2. Implicit LMMs

The four LMMs and a semi-implicit predictor method considered are

Implicit Euler Method

Trapezoidal Method

u "_+t = u" + AtS n+l, (3.24)

1

un-I- 1 = ." + + s"+'), (3.25)

Midpoint Implicit Method

3-Level Backward Differentiation Formula (BDF)

u '=+' : u" + ,S "+x + g(u - u"-'), (3.27)

Semi-Implicit Predictor Method of Gresho (Gresho 1996).

The semi-implicit predictor method is the same as (3.24) but with an added predictor step using

the explicit Euler before the implicit step (3.24) to make the final scheme second-order accurate.

The four methods of solving the resulting nonlinear algebraic equations are as follows.
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Linearization (a noniterative procedure) is achieved by expanding S "+1 as S'_+

J(u_)(u "+1 - u"), where J(u _) is the Jacobian of S.

Simple Iteration is the process where, given a scheme of the form u "+1 = G(u", u"+l),
we perform the iteration

u n+l = G(un, u"+1_(,,+i) (,,) /, (3.28)

where uo +I = u'_and "(v)" indicatesthe iterationindex. The iterationiscontinued either

untilsome tolerancebetween iteratesisachieved or a limitingnumber of iterationshas been

.n+l _ un+lperformed. In all of our computations the tolerance "tol" is set as u(,,) 0,-1)11 < tol and

the maximum number of iterations is 15. The major drawback with simple iteration is that for

guaranteed convergence the iteration must be a contraction; i.e.

 (u",w)ll - toll, (3.29)

where a < 1. Whether or not the iteration is a contraction at the fixed points will influence

the stability of that f'L_ed point, overriding the stability of the implicit scheme. Away from the

fixed points the influence will be on the basins of attraction. In other words, ' 'implicit method

+ simple iteration" behaves like explicit methods. As can be seen in Yee & Sweby (1994,

1995a,b), numerical results illustrate this limitation in terms of basins of attraction as well. One

advantage of the "implicit method + simple iteration" over non-LMM explicit methods is that

spurious steady states cannot occur. Due to this fact, results using simple iteration will not be

presented here.

Newton Iteration for the implicit schemes is of the form

u n+l = u "+1 - Fw¢u" u'_+l/-aF/u" u "+a/ (3.30)(,,+1) (,,) x , (_,) / x , (,,) /,

where u_ +* = u". The differentiation is with respect to the second argument and the scheme

has been written in the form (for two-level schemes) F(u", u ''+1) = O.

Modified Newton iteration is the same as (3.30) except it uses a frozen Jacobian F'(u", u").

The same tolerance and maximum number of iterations used for the simple iteration are also

used for the Newton and modified Newton iterations. In all of the computations, the starting

scheme for the 3-level BDF is the linearized implicit Euler.

We also considered two variable time step control methods. The first one is "implicit Euler
+ Newton iteration with local truncation error control"

//n+l -7- UB
(o)

- At'S u"+l-
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with
At" = 0.9At n-' {toll/llu" - - AZ (3.31b)

where the (n + 1)th step is rejected if [[u" - u "-1 - At"-lS(u")ll > 2to11. In this case, we

set At" = At "-1. The value "toll" is a prescribed tolerance and the norm is an infinity norm.

The second one is the popular "ode23" method

k, = S(u-)
k2= S(u" + At"k )

k, = S(-" + + k,)/4)

u "+I = u '_ + At'=(k_ + k= + 4ks)/6

Au "+a = Atn(kl + k3 - 2ks)/3 (3.32a)

with

At" = 0.gAt "-_,/ toll (3.32b)
VI1 ,,"11'

where the (n + 1)th step is rejected if IIAu"+all > toll max{l, Ilu"+lll}. In that case, we set

At "-_ = At". Again, "tol_ '" is a prescribed tolerance and the norms are infinity norms. We

also use the "straight Newton" method to obtain the numerical solutions of S(u) = 0, which

is the one-step Newton iteration of the implicit Euler method of (3.30).

We mapped out the bifurcation diagrams and numerical basins of attraction for these

five schemes as a function of the time step for different nonlinear model equations with

known analytical solutions (scalar and 2 × 2 systems of autonomous nonlinear ODEs). The

computations were performed on the CM-5. In general, we preiterated the discretized equations

3000 - 5000 steps before the next 3000 iterations are plotted. Comparing the results with the

explicit methods, it was found that aside from exhibiting spurious asymptotes, all of the four

implicit LMMs can change the type and stability (unstable to stable) of the steady states of

the differential equations (DEs). See the next section for some examples. They also exhibit a

drastic distortion but less shrinkage of the basin of attraction of the true solution than standard

non-LMM explicit methods. In some cases with smaller At, the implicit LMMs exhibit

enlargement of the basins of attraction of the true solution. Overall, the numerical basins of

attraction of the linearized implicit procedure mimics more closely the basins of attraction of

the continuum than the studied iterative implicit procedures for the four implicit LMMs. In

general the numerical basins of attraction bear no resemblance to the exact basins of attraction.

The size can increase or decrease depending on the time step. Also, the possible existence of the

largest numerical basin of attraction that is larger than the exact one does not necessarily occur

when the time step is the smallest. Although unconditionally stable implicit methods allow a

theoretically large time step At, the numerical basins of attraction for large At sometimes are

so fragmented and/or so small that the safe (or practical) choice of At is only slightly larger or
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comparableto thestability limit of standardexplicit methods(butwith largernumericalbasins
of attractionthantheexplicit methodcounterparts).In general,if oneusesa At that is a fraction

of the stability limit, one has a higher chance of convergence to the correct asymptote than when

one uses standard explicit methods. Comparing the results of Yee & Sweby (1994, 1995b)

with Yee & Sweby (1995a), the implication is that unconditionally stable implicit methods are,

in general, safer to use and have larger numerical basins of attraction than explicit methods.

However, one cannot use too large a time step since the numerical basins of attraction can be

so small and/or fragmented that the initial data has to be very close to the exact solution for

convergence. This knowledge improved the understanding of the basic ingredients needed for

a time-marching method using constant step sizes to have a rapid and guaranteed convergence

to the correct steady states.

Numerical experiments performed on the two variable time step control methods also

indicated that, although variable time step controls are not foolproof, they might alleviate

the spurious dynamics most of the time. One shortcoming is that in order to avoid spurious

dynamics, the required size of At is impractical to use in CFD, especially for the explicit

ode23 method. The next section shows some representative global asymptotic behavior of these

implicit LMMs.

3.5.3. Numerical Examples

Selected results in the form of bifurcation diagrams and basins of attraction are shown in

Figs. 3.10-3.16 for the logistic ODE model (3.7) and Figs. 3.17-3.19 for the second model

(3.23). In Figs. 3.10, 3.12, 3.14, 3.16-3.19, the left diagrams show the bifurcation diagrams and

the right diagrams show the bifurcation diagrams with basins of attraction superimposed on the

same plot. However, Figs. 3.11, 3.13 and 3.15 show only the bifurcation diagrams with basins

of attraction superimposed on the same plot. In all of Figs. 3.10-3.19, the abscissa is r = aAt.

Note that the preselected regions of At and the initial data were determined by examining

a wide range of At and initial data. In most cases, we examined At from close to zero up to

one million. What is shown in these figures represents some of the At and initial data ranges

that are most interesting. Due to this fact, the At and initial data ranges shown are different

from one method to another for the same model problem. The streaks on some of the plots are

either due to the non-settling of the solutions within the prescribed number of iterations or the

existence of small isolated regions of spurious asymptotes. Due to the high cost of computation,

no further attempts were made to refine their detailed behavior since our purpose was to show

how, in general, the different numerical methods behave in the context of nonlinear dynamics.

Due to the method of tracking the basins of attraction the color coding of the basin of

attraction associated with a particular asymptote might vary from one vertical line to the next

vertical line (i.e, from one At to the next). This is the case for Figs. 3.10, 3.11, 3.14, 3.18 and

3.19. For example in Fig. 3.10 the basin of attraction (as a function of At) for the steady state

u = 1 is the red region before the appearance of the light blue strip. After the appearance of the

blue strip, it is the region above the envelope that separates the green and red regions. When in
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doubt,usethebifurcationdiagramasaguideandidentify ther valuewherethesuddenbirth of
stablespuriousasymptotesoccured.Incidently,for this particulardiscretemap,this envelope
andthecritical valuer whichundergoesstabilizationof thefixedpointu = 0 can be obtained

analytically. Independently, Arriola (1993) derived the analytical form of the envelope.

The midpoint implicit method behaves similarly to the trapezoidal method. In fact their

linearized forms are identical. From here on, the midpoint implicit method is not discussed.

As mentioned before, for unconditionally stable LMMs, the scheme should not experience

any steady bifurcation from the stable branch because unconditionally stable LMMs preserve

the stability of the stable steady states. This rule does not apply to unstable steady states

using super-stable LMMs. Before stabilization of the unstable steady state, super-stable LMMs

typically undergo "inverted period doubling bifurcations" or the "inverted logistic-map-type

bifurcations" (or crisis in terms of Grebogi et al. 1983). See Fig. 3.10 for 0.9. < u" < -1 for

an example. For the ODE (3.23), all of the implicit methods experience at least two inverted

logistic-map-type bifurcations. See Figs. 3.17-3.19. From these figures, we can obse_e that all

of the studied implicit methods can introduce stable spurious chaos since a logistic-map-type of

spurious bifurcations occur.

Figures 3.10, 3.11, 3.14, 3.16-3.19 show other situations where the rest of three implicit

LMMs and the Gresho method stabilize the unstable steady states of the ODEs. It appears that

the onset of stabilization of the unstable steady states arises in two ways. One way is the birth

of stable spurious asymptotes or stable spurious chaos in the form of an inverted logistic map.

The second way is the birth of unstable spurious asymptotes (fixed points other than period

one) leading to the onset of stabilization of unstable steady states. Although the two ways of

stabilization of the unstable steady states are similar, their corresponding basins of attraction

are very different. See Figs. 3.10, 3.14, 3.16-3.19.

The critical value of Ate for the onset of stabilization is not very large. It is problem

dependent, method dependent and also procedure dependent (the various ways of solving the

nonlinear algebraic equations). In most cases, the value of the Ate is comparable to or smaller

than the equivalent of the stability limit of standard explicit Runge-Kutta methods. It is not

uncommon for the underlying basins of attraction to be larger than the exact basin of attraction

for At < Ate.

Among the three procedures, the linearized noniterative forms have a higher tendency to

stabilize unstable steady states. See Figs. 3.10, 3.14, 3.16-3.19. Here the word "procedure"

excludes the simple iteration method. Among the three LMMs, the trapezoidal method is the

least likely to stabilize unstable steady states, but the corresponding basins of attraction can be

very small and more fragmented than for the other two LMMs. Also, the At, for stabilization is

bigger than for the other two LMMs. For a particular LMM not all three procedures for solving

the nonlinear algebraic equation necessarily stabilize the unstable steady states (see Figs. 3.14

and 3.15). But, if they do, the pattern or the method for the onset of the stabilization does not

have to be the same (see Figs. 3.10 and 3.11) but the value of At, is the same for all models
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and methods studied.

For the case of the semi-implicit predictor method, the onset of the stabilization can be

accompanied by the birth of other spurious asymptotes (other than steady state). See Fig. 3.16

for r > 2. It is fascinating to see how complicated the basins of attraction are which compose

the many disjoint and fractal like regions. Similar behavior is also observed for the "implicit

Euler + modified Newton" but is less pronounced than the semi-implicit predictor method. See

Figs. 3.11 and 3.16.

Compared with the three implicit LMMs, and independent of the method of solving the

nonlinear algebraic equation, the Gresho method exhibits the smallest basin of attraction

(compared with the exact basin of attraction of the stable steady state) and is more fragmented

for At < Ate. Aside from the efficiency issue, the implication is that a higher order accuracy

scheme might not be as desirable for the time-marching approach.

Since straight Newton is just a one step "implicit Euler + Newton", its basins of attraction

(for At larger than explicit Runge-Kutta) are almost the same even with more than one step

iterations. Studies indicated that contrary to popular belief the initial data using the straight

Newton method may not have to be close to the exact solution for convergence. Straight Newton

exhibits stable and unstable spurious asymptotes. Initial data can be reasonably removed from

the asymptotic values and still be in the basin of attraction. However, the basins can be

fragmented even though the corresponding exact basins of attraction are single closed domains.

See Fig. 6.25 of Yee & Sweby (1995a). The cause of nonconvergence may just as readily be due

to the fact that the numerical basins of attraction are fragmented. If one uses a time step slightly

bigger than the stability limit of standard explicit methods for the three LMMs, straight Newton

can have similar or better performance. In fact, using a large At with the linearized implicit

Euler method or the implicit Euler + Newton procedure has the same chance of obtaining the

correct steady state as the straight Newton method if the initial data are not known or arbitrary
initial data are taken.

A consequence of all of the observed behavior is that part or all of the flow pattern can

change topology as the discretized parameter is varied. An implication is that the numerics

might predict, for example, a nonphysical reattachment flow. Thus even though LMMs preserve

the same number (but not the same types or stability) of fixed points as the underlying DEs, the

numerical basins of attraction of LMMs do not coincide with the exact basins of attraction of

the DEs even for small At. Some of the dynamics of the LMMs observed in our study can be

used to explain the root of why one cannot achieve the theoretical linearized stability limit of

the typical implicit LMMs in practice when solving strongly nonlinear DEs (e.g., in CFD).

3.6. Does Error Control Suppress Spuriosity?

The previous sections discussed mainly the spurious behavior of long time integrations of

initial value problems of nonlinear ODE solvers for constant step sizes. The use of adaptive
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step size basedon local error control for implicit methodswas studiedby Dieci & Estep
(1991).Dieci andEstepconcludedthatfor superstable LMMs with local step size error control

and depending on the method of solving the resulting nonlinear algebraic equations, spurious

behavior can occur. Our preliminary study on the two variable step size control methods

discussed in the previous section indicated that one shortcoming is that the size of At needed

to avoid spurious dynamics is impractical (too small) to use, especially for the ode23 method.

Theoretical studies on the adaptive explicit Runge-Kutta method for long time integration have

been gaining more attention recently. Recent work by Smart (1994, 1995), Humphries (1992),

Higham and Stuart (1995) and Ayes et al. (1995) showed that local error control offers benefits

for long-term computations with certain problems and methods. Ayes et al. addressed the heart

of the question of whether local error control confers global properties of steady states of the

IVP of autonomous ODEs using adaptive Runge-Kutta type methods.

Aves et al.'s work is concerned with long term behavior and global quantities of general

explicit Runge-Kutta methods with step size control for autonomous ODEs. They believed that

the limit tn _ 00 is more relevant than the limit of the variable step sizes h,_ _ 0. They

studied spurious fixed points that persist for arbitrarily small error tolerances r. This type

of adaptive Runge-Kutta method usually consists of a primary and secondary Runge-Kutta

methods of different order. Their main result is positive. When standard local error control is

used, the chance of encountering spuriosity is extremely small. For general systems of ODEs,

the constraints imposed by the error control criterion make spuriosity extremely unlikely.

For scalar problems, however, the mechanism by which the algorithm succeeds is indirect --

spurious fixed points are not removed, but those that exist are forced by the step size selection

mechanism to be locally repelling (with the relevant eigenvalues behaving like O(1/r)).

To be more precise, adaptive time stepping with Runge-Kutta methods involves a pair of

Runge-Kutta formulae and a tolerance parameter "-r", which is usually small. See for example

the "ode23" method (3.32). Hence a spurious fixed point of the adaptive procedure requires:

1) A spurious fixed point common to both methods must exist. This is usually easy to achieve

since the bifurcation diagrams of individual Runge-Kutta methods have so many branches.

2) This spurious fixed point must be stable. This is much more difficult to achieve - essentially

since the bifurcation curves for the two methods must intersect tangentially; otherwise there

will be an eigenvalue of the Jacobian of O(1/,').

They then show that the probability of 2) occurring is zero. However, for a given pair one

can generally construct functions for which it holds (generally stability will only hold for ," >

lower bound). In any event, the basin of attraction of this spurious fixed point will only be

0(,'). These results were derived for scalar problems.

In the worst scenario problem classes exist where, for arbitrary r, stable spurious fixed points

persist with significant basins of attraction. They derived a technique for constructing ODEs for

which an adaptive explicit Runge-Kutta method will behave badly. They showed that this can

be accomplished using a locally piecewise constant function S(u). Since the disjoint pieces can
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beconnectedin anymanner, S can be made arbitrarily smooth. Hence, smoothness of S alone is

not sufficient to guarantee that spurious behavior will be eliminated. These examples highlight

the worst-case behavior of adaptive explicit Runge-Kutta methods. They also mentioned that

they can construct similar examples involving systems. However, these types of examples are
somewhat contrived.

Griffiths is currently working on the application to hyperbolic PDEs. Preliminary results

(private communication with David Griffiths (1996)) showed that it is by no means clear at the

moment whether stable spurious solutions may be eliminated. The difference is that, unlike

physical problems governed by nonlinear ODEs, nonlinear PDEs may have wave-like solutions

rather than fixed points due to the spatial derivatives.

3.7. Dynamics of Numerics of a Reaction-Convection Model

This section further studies the dynamics of selected finite difference methods in the

framework of a scalar model reaction-convection PDE (LeVeque & Yee 1990) and investigates

the possible connection of incorrect propagation speeds of discontinuities with the existence

of some stable spurious steady-state numerical solutions. The effect of spatial as well as time

discretizations on the existence and stability of spurious steady-state solutions will be discussed.

This is a summary of the work of Lafon & Yee (1991, 1992).

A nonlinear reaction-convection model equation in which the exact solution of the governing

equations are known (LeVeque & Yee 1990) is considered. The model considered in LeVeque

and Yee is

,,, + a,,. = ,,s(,,) 0 _<• _ z (3.33.)

u(z,0) = u°(2) (3.33b)

where a and a are parameters, and S(u) = -u(1 - u)(2 - u). The boundary condition given

by

,,(0, t) = u,

or, periodic boundary condition given by

_>o (z.3ac)

u(0,t) = u(i,t) t _> 0 (3.33d)

is used to complete the system.

The exact steady-state solutions u ° of the continuum PDE (3.33) can be obtained by

integration by parts of adu*/dz = aS(u °) which yields

o, r ,o'(,/-,, ]---a + c = S(u*) - log[ v/lu,(aQ(2 - _-/(-))l ' (3.34)
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wherec is the integration constant.

In the case where the boundary condition u(0, t) = u0, there is a unique steady state and its

value is determined by uo. If Uo is a root of S, (i.e., Uo = 0, 1, or 2), then the exact steady

state is constant in z and is equal to uo. But if u0 is not a root of S, then the exact steady state

satisfies

"u*(z)- X _ uo(uo - 2) ]
= _--log . (3.35)2)

Although, the domain is confined to 0 5 z % 1, the steady-state solution is defined for

0 < z < oo. The limit ofu*(z) is 0 as z --} oo for -oo < u0 < 0 or0 < Uo < 1. The limit of

u*(z) is 2 if I < u0 < 2, or 2 < u0 < oo. One can show that this exact steady-state solution is

stable.

In the case of the periodic boundary condition where u(0,t) = u(1,t) and u'(0) is not a root

of S, it can be shown that there exist three exact steady-state solutions; namely u*(z) = 0, 1,

or 2. One can also show that u ° = 0 and u* = 2 are stable while u ° = 1 is unstable.

Denote the basin of attraction for the steady state u* by BA(u*). Then it is obvious that

BA(O), the basin of attraction for the steady-state solution u* = 0, is the set of initial data

u°(z) < 1 for all real values of z. In mathematical notation

BA(O)={u ° : u°(z)< 1 Vz}.

Similarly, the basin of attraction for the steady state u* = 2 is

(3.36)

BA(2) = {u ° : u°(z) > 1 V z}. (3.37)

Later we contrast these exact basins of attraction with the numerical basins of attraction ffA(0)

and BA(2) for the various schemes under discussion.

For the numerical methods, semi-discrete (method of lines) finite difference methods (FDMs)

and implicit treatment of the source terms (semi-implicit) with noniterative linearization using

a characteristic form are considered.

Spatial Discretizations: Let uj(t) represent an approximation to u(zj, t) where zj = jAz and

j = 0, ..., J with Az = 1/J the uniform grid spacing (J + 1 grid points). Let the parameter

a (3.38)

Define the flow residence time in a cell rc = Az/a (characteristic time due to convection)

and the time required by the reaction to reach equilibrium 1-, = 1/c_. Then a simple physical

interpretation of the parameter pl comes from the fact that Pl is equal to the ratio r,/rc. Note

also that this ratio is the inverse of a Damkohler number. Therefore, the parameter pl is a

measure of the stiffness of the problem. The smaller p_ is, the stiffer the problem becomes.
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A semi-discreteapproximation(for a chosenspatialdiscretizationfor the convection and

source term) of the reaction-convection PDE (3.33a) is then

1 dU
- F, (3.s9)

where U is the vector whose components are uj(t), 1 _< j _< ./. The function F is a

discrete ./-dimensional vector which depends on the grid function U, the parameter pl, and

the particular spatial finite difference approximation. For simplicity the commonly used spatial

discretizations (the first-order upwind (UP1), second-order upwind (UP2) and second-order

central (C2) schemes) are considered for the convection term, and the pointwise evaluation

(PW), upwind interpolation (UI), and mean average between two neighboring grid points (MA)

are considered for the (spatial) numerical treatments of the source term. The combination of

the three numerical treatments of the source term and the three basic schemes used for the

discretization of the convection term yields 9 spatial finite difference approximations for the

reaction-convection PDE (3.33a).

The expressions of the elements fj of F corresponding to the 9 spatial difference approxima-

tions for (3.33a) and (3.33c) are given below, where we use the obvious notations u-1 = ud-x,

ue = u d and u t = u j + x for the periodic boundary condition (3.33c).

1. First-order upwind for convection - pointwise evaluation for source term (UP 1PW)

fjCV)= -p,(,,j - + (3.40a)

2. Second-order upwind for convection - pointwise evaluation for source term (UP2PW)

3 1

f_(V) = -p,(_,,_- ,,__, + _,,__,)+ S(,,_).

3. Second-order central for convection - pointwise evaluation for source term (C2PW)

(3.40b)

1

fj(V) = - _pl(,,_+, - "i-,) + S(,,_).

4. First-order upwind for convection - upwind evaluation for source term (UP1UI)

(_.40c)

yj(U) = -p,(uj - uj-1 ) + OS(uj_, ) + (1 - O)S(uj). (3.41a)

5. Second-order upwind for convection - upwind evaluation for source term (UP2UI)

3 1
y_(V) = -p,(_uj - u__, + ]uj_,) + eS(uj_l) + (Z - S)S(uj).

6. Second-order central for convection - upwind evaluation for source term (C2UI)

(3.41b)

1

fj(U) = -_p,(uj+, - uj_,) + OS(uj-x ) + (1 - O)S(uj). (3.41c)
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7. First-order upwind for convection - mean average evaluation for source term (UP1MA)

1[ ]fj(u) =-p,(,,j--j-1)+ _ s(,,j+,) + s(,,j_,) . (3.42a)

8. Second-order upwind for convection - mean average evaluation for source term (UP2MA)

3 1 1[ ]lj(u) = -p,(_._-.__, + _j_,) + _ s(.j_,) + s(.j+,). (3.42b)

9. Second-order central for convection - mean average evaluation for source term (C2MA)

1 1 - -

fi(tr) = - _p,(-i+,_ - -J-,) + _ s(.j_,) + s(._+,):. (3.42c)

The parameter 0 associated with the upwind interpolation of the source term in formula (3.41)

is an extra parameter in the discretization, lying between 0 and 1. For ease of referencing,

the above 9 spatial discretizations will be denoted by the symbols UP1PW, UP1UI, UP1MA,

UP2PW, UP2UI, UP2MA, C2PW, C2UI and C2MA.

Time DiscretizationJ: To contrast the nonlinear behavior between LMMs and explicit Rtmge-

Kutta methods, for simplicity, the explicit Euler and the modified Euler schemes are considered.

Let u_ represent an approximation of u(jAz, nAt) with a fixed time step At. Also let U"

denote a vector with elements u_'. Then the fully discrete approximation of the PDE (3.33a)

with explicit Euler time discretization is

U"+' = U" + rnF(U"), (3.43)

where the parameter/,2 is simply related to the time step through

P2 = aAt. (3.44)

With modified Euler time discretization, the fully discrete approximation is

(3.45)

In the following the above 18 fully discrete approximations will be denoted for ease of

reference by the symbols UP1PW/EE, UP1PW/ME, etc. (where EE stands for explicit Euler

a at in (3.41) is used.and ME for modified Euler). In all of the computations 8 = e = zx,,

FDMs Based on the Characteristic Form: A more physical approach to updating the grid

value uj at time level n + 1 is to trace back the characteristic passing through (zj, (n + 1)At).

Denote by (_, nat) the coordinates of the point on the characteristic at time nat. Along this

characteristic, the problem reduces to solving the ODE
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,,_ = _s(_) .at < ,- _<(. + z)at (3.46a)

with the initial condition

,,(.at) = ,,"(_), (3.46b)

where u"(a_) denotes the value of u at point _ and time level nAt, obtained by some

interpolation method on the adjacent grid function u_. For this approach, explicit and implicit

time discretizations of (3.46a) or, equivalently, explicit and implicit treatments of the source

term of the PDE (3.33a) are considered. To facilitate the analysis, the convection part of the

PDE (3.33a) is handled in an explicit way. This means that for the homogeneous part of the

PDE (3.33a) all the underlying schemes are under the CFL restriction

aAt

e -- Az -- Pl/_ < 1. (3.47)

An immediate consequence is that _ lies between zj-i = (j - 1)Az and zj = jAz. Then,

from a linear interpolation we get

,a"= ,,"(_)= *,,L, + 0 - 0,,_'. (3.48)

For fully explicit schemes, the same two explicit time discretizations for the method of lines

approach are considered here. With explicit Euler, the fully discrete approximation (denoted by

CHA/EE) takes the form

u] +1 : eu./__.., + (1 -- e)u; +/_S(t_n). (3.49)

With the modified Euler time discretization the fully discrete approximation (denoted by

CHA/ME) takes the form

u"+' " (1 e)u_= eu__l + - +r_$(a), (3.50)

where

= ,,,L1+ (1-0,,;' + (3.51)

For a less restricted time step, the implicit Euler (IE) and the trapezoidal implicit scheme

(T) are considered for the source term. With implicit Euler, the fully discrete approximation,

denoted by CHA/IE, takes the form

u_ +' - 1_S(u_] +1) = t2", (3.52)

while with the trapezoidal rule, the fully discrete approximation, denoted by CHA/T, takes the
form
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u_'+l P2S(u"+x_=cu';-'2j , +(1-c)u_'+ -_S(ti"). (3.53)

The corresponding linearized implicit scheme CHA/LIE associated with the fully discrete

approximation CHA/IE is given by

u_'+' ,,++ _'_-' -':u7 +p's(';): " , . (3.54)
1- p2s(,,j) '

with S' = dS/du = -2 + 6u - 3u 2. The linearized trapezoidal method CHA/LT is

. _.;_, _..; + ,a[s(.;)+ s(a-)]
";+' = "J + 1- ,as'(. 7) (3.55)

3.7.1. Spurious Asymptotes of Full Discretizations

Besides the three exact steady-state solutions, depending on the numerical methods, either

the spatial discretizations and/or the time differencing can independently introduce spurious

asymptotic numerical solutions (see Lafon & Yee (1991) for a detailed analysis). Bifurcation

diagrams and stability analysis for the exact and spurious asymptotes of the above schemes and

source term treatments were discussed in Lafon & Yee (1991, 1992). Interested readers are

referred to these references for more details.

Since the explicit Euler and the implicit methods are LMMs, no spurious steady state due

to time discretizations are possible. But, consider for example the various FDMs involving

modified Euler time differencing (method of lines or characteristic form) and look for the simple

case of spatially invariant steady states (i.e., the value of uj is the same for all j, 1 _< j _< J).

Then it is found that for such FDMs, the value u* of a spatially invariant steady-state must

satisfy

,.,*+ _-s(,,*) : a, s(_) : o. (3.56)

It can be shown that (3.56) admits the following 9 solutions

6, _ 3+ , 1, 1± +-,_,, 2, _ 1± (3.57)

in which u* = 0, 1 or 2 are the exact steady-state solutions while the rest are spurious

steady-state numerical solutions introduced by the modified Euler time discretization.
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3.7.2.Linearized Behavior vs. Nonlinear Behavior

To illustrate the differences between the linearized analysis and the nonlinear solution

behavior, Fig. 3.20 shows the spectral radius around the exact steady-state solution u* = 2

and the bifurcation diagram obtained with initial data U ° = (2., 2.1, 2., 2.1, 2, 2.1, 2.) for the

scheme UP1UI/EE and pl = 7. Similar results for the scheme UP1UI/ME are shown in Fig.

3.21. For pl = 7, the scheme UP 1UI/ME exhibited two disjoint linearized stability intervals.

From Fig. 3.21 we observe that outside these stability intervals the scheme does not necessarily

diverge (as indicated by the linearized analysis) but can converge to a spurious asymptotic
solution.

Another example which shows the importance of nonlinear analysis is that of two schemes

that exhibit the same linearized behavior yet have different nonlinear behavior (true behavior).

For example, the linearized stability analyses for schemes UP1UIfEE and CHA/EE (see Figs.

5a and 7a of Lafon & Yee (1992)) are identical even though the bifurcation diagrams obtained

with the same initial data and p_ = 7 are different (see Figs 19a and 20a of Lafon & Yee

(1992)).

3.7.3. Spurious Steady States and Nonphysical Wave Speeds

The possible connection of the numerical phenomenon of incorrect propagation speeds of

discontinuities with the existence of some stable spurious steady states introduced by the spatial

discretization is discussed here. The boundary condition (3.33c) and the following piecewise
constant initial data

2 0 < z < zd, (3.58)u°(z)= 0 za<z< 1

are considered. The constant value za denotes the location of the discontinuity. The exact

solution of (3.33a,b,c) with initial data (3.58) is simply

,,(z, t) = ,,'(z - at) (3.59)

which is a wave traveling at constant speed a.

For an explanation of how numerical methods applied to this model PDE are likely to produce

wrong speeds of propagation for the initial data (3.58), the reader is referred to LeVeque &

Yee (1990). This phenomenon lies with the smearing of the discontinuity caused by the spatial

discretization of the advection term. This introduces a nonequilibrium state into the calculation.

Thus, as soon as a nonequilibrium value is introduced in this manner, the source term turns on

and immediately tries to restore equilibrium, while at the same time shifting the discontinuity

to a cell boundary.

For simplicity, consider the first-order upwind spatial discretization with the explicit Euler
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time discretizationfor (3.33a,c)and(3.58).Assumeanequalspatialincrementof J intervals so

that the discretized initial data associated with (3.59) is

o f 2 I<j<_K
(3.60)

uj= _ 0 K<j<J+I

with the index K depending on the constant za. In addition, assume that the convection speed

a = 1 so that At = c/J. In the computation J = 20 and the Courant number c = .05. With

these assumptions, only the stiffness a of the source term is a free parameter. Define the average

wave speed W for the numerical solution as follows

Az u_- uj ,
W - 2_--At j=l

(3.61)

where the average is taken on the time interval 0 to nAt. Figure 3.22 shows this average speed

versus pl (proportional to 1/o,). It reveals the fact that when p_ becomes large (or, similarly

when the source term is not stiff) the numerical wave speed tends to the exact solution (a = 1),

while for pl < .25 the numerical solution is a standing wave (the average speed being 0).

This zero wave speed is indeed a stable steady-state solution of the discretized equation

but not a solution of the continuum PDE. Since the explicit Euler time differencing has

the property of not producing spurious steady-state numerical solutions, this spurious stable

steady-state numerical solution must have been introduced by the spatial discretization. In

fact, it is evident from the bifurcation diagram shown in Fig. 2 of Lafon & Yee (1991)

that this spurious steady state lies on the stable branch originating at p_ = 0 from the state

ul =2, .... ,ul_ = 2, UK+I =0, .... ,uj = O.

3.7.4. Numerical Basins of Attraction

In order to show the global nonlinear solution behavior of the schemes, numerical basins

of attraction (of the underlying schemes) are compared with each other as well as with the

exact basin of attraction for u* = 2 (BA(2)). Due to the complexity and CPU intensive nature

of the computation, unlike the detailed basins of attraction presented in Yee & Sweby (1994,

1995a,b), only a fraction of the basins of attraction are computed.

To compute a partial view of some numerical basins of attraction for u* = 2 (if'A(2)), a set

of initial data in a two-dimensional plane was selected. Even with this restriction, the analysis

is still very complex and the computation is CPU intensive; it was performed only for the case

J = 4 (5 grid points). The equation of the chosen plane is

ul = 2 ; u4 = 2. (3.62)

A set of 121 initial data in the plane (3.62) were obtained by confining u2 and us in the square

1.1 < u2 < 3.1, 1.1 < us _< 3.1 with a uniform increment of Au_ = Aus = 0.2. For each
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initial datum,5000preiterationswere performed. The asymptoticbehavioris plotted in the
(u2,u3) plane. In all of the figures, open triangles belong to the numerical basin of attraction

BA(2). Dark squares belong to the numerical basin of attraction of a spurious steady state.

Dark circles are the numerical basins of attraction of other (exact or spurious) asymptotic

solutions, while a blank space denotes a divergent solution. Note that the whole square domain

1.1 _< u2 _< 3.1, 1.1 _< us _< 3.1 is inside the true basin of attraction of the exact steady

state u* = 9. and therefore the true behavior should be an open triangle for all the initial data

considered. The study in Lafon & Yee ( 1991) indicated that the modified Euler time differencing

has a smaller attractive region than the explicit Euler for the domain considered even though

in terms of linearized stability and accuracy, the modified Euler exhibits an advantage over the

explicit Euler.

For example, for Pl = 0.1 and/:,2 = 0.5, implicit treatments of the source term exhibit a

larger attractive region of initial data than the explicit treatments of the source term. However,

as the time step is further increased, an adverse behavior is observed contrary to the common

belief that implicit schemes can operate with much higher time step and still produce the

correct steady-state numerical solution. Since the source term is handled implicitly, the classical

guideline for the time step constraint is given by the explicit discretization of the convective term

(homogeneous part of the PDE (3.33a)), or equivalently by the CFL constraint e = pl/_ < 1.

Thus, the permissible time step for the implicit treatments of the source term is larger than

explicit treatments of the source term. However, it is evident from the computation shown on

Figs. 3.23 - 3.25 for implicit schemes CHA/LIE and CHA/LT with a Courant number set equal

to 0.3 (p2 = 3) and 1 (/_ = 10) respectively, that these implicit schemes no longer give the

correct asymptotic solution, in particular for the scheme CHA/LT.

3.8. Spurious Dynamics in Time-Accurate (Transient) Computations

In the examples chosen by Lorenz (1989), he showed that numerical chaos always precedes

divergence of a computational scheme. He suggested that computational chaos is a prelude

to computational instability. Poliashenko & Aidun (1995) showed that this is not a universal

scenario. In previous sections, we have shown that numerics can introduce chaos. Using a simple

example, Corless (1994b) showed that numerics can suppress chaotic solutions. The work of

Poliashenko and Aidun also discussed spurious numerics in transient computations. Adams et

al. (1993) discussed spurious chaotic phenomena in astrophysics and celestial mechanics. They

showed that the source of certain observed chaotic numerical solutions might be attributed to

round-offerrors. Adams also discussed the use of interval arithmetics (interval mathematics or

enclosure methods) to avoid this type of spurious behavior. Moore et al. (1990) discussed the

reliability of numerical experiments in thermosolutal convection. Keener (1987) discussed the

uses and abuses of numerical methods in cardiology.

It is a common misconception that inaccuracy in long-time behavior of numerical schemes

poses no consequences for transient or time-accurate solutions. This is not the case when one

is dealing with "genuinely nonlinear DEs (Jackson 1989)". For genuinely nonlinear problems,
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dueto thepossibleexistenceof spurioussolutions,largernumericalerrorscanbe introducedby
thenumericalmethodsthanonecanexpectfrom alocal linearizedanalysisor weaklynonlinear
behavior.Lafon& Yee(1991)illustratedthisconnection.Section3.7.3summarizestheirresult.
Thesituationcanbecomemoreintensifiedif theinitial dataof theDEis in thebasinof attraction
of a chaotictransient(Grebogiet al. 1983)of thediscretizedcounterpart.In fact, it is possible
thatpartor all of thesolutiontrajectoryis erroneous.SectionV showsapracticalexampleof a
chaotictransientneartheonsetof turbulencein directnumericalsimulationsof channelflow by
Keefe(1996).Sincenumericscanintroduceandsuppresschaos,andcanalsointroducechaotic
transients,thedangersof relying onnumericaltestsfor the onsetof turbulenceandchaosis
evident.

Therehasbeenmuchdebateon theoverall accuracyaway from shocksof high-resolution
shock-capturingmethods.Donat(1994)addressedthisissuefrom atheoreticalstandpointwhile
Casper& Carpenter(1995)illustratedit with ashockinducedsoundwavemodel.Casperand
Carpenterconcludedthat thereis only first-order accuracydownstreamof the sound-shock
interactionusingaspatially4th-orderENOscheme.Sections5.2and5.3illustratetwoadditional
typesof spuriousnumericsin transientcomputations.

IV. Spurious Dynamics in Steady-State Computations

Any CFD practioner would agree that making a time-marching CFD computer code

converge efficiently to a correct steady state for a new physical problem, that was previously

not understood, is still an art rather than a science. One usually has to tune the code and

still encounters one or more problems such as blow-up, nonconvergence, nonphysical, or

slow convergence of the numerical solution. Some of these phenomena have been reported

in conference proceedings and reference journals, but the majority have been left unreported.

Although these behaviors might be caused by factors such as poor grid quality, under-resolved

grids, improper numerical boundary conditions, etc., most often they can be overcome by

employing standard procedures such as using physical guidelines, grid refinement, improved

numerical boundary treatments, halving of the time step, and using more than one scheme

to double check if the numerical solution is accurate and physically correct. However,

these standard practices alone may sometimes be misleading, not possible (e.g., too CPU

intensive) or inconclusive due to the various numerical uncertainties (see section I) that can be

attributed to the overall solution process. Consequently, isolation of the sources of numerical

uncertainties is of fundamental importance. Section III isolates some of the spurious numerics

for elementary models. Complementing the phenomena observed in Section III, this section

illustrates examples from CFD computations. These examples were published in Yee & Sweby

(1996). We concentrate mainly on the convergence issues that are contributed by the spurious

dynamics that are inherent in the schemes. Section 4.2.1 was written by Bjorn Sjogreen of the

Uppsala University, Sweden.
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4.1. A I-D Chemically Relaxed Nonequilibrium Flow Model 4

The model considered is a nonequilibrium flow field relaxation of the one-dimensional Euler

equations for a (N'2, N) mixture. This type of flow is encountered in various physical situations,

such as shock tube experiments (the mixture behind the shock being in a highly nonequilibrium

state) or an hypersonic wind tunnel. Under these assumptions the model can be expressed as a

single ODE,

dz

= s(p,2,z), (4.z)

where z is the mass fraction of the N2 species, p is the density of the mixture and T is the

temperature. There are two algebraic equations for p and T.

This system consists of a disparity range of parameter values (many orders of magnitude)

and is stiff and highly nonlinear. Even when care is taken, the following features are observed

when Rungc-Kutta schemes arc used for the integration (Sweby et al. 1995):
• restricted basins of attraction

• spurious equilibrium values

• oscillatory solutions

The derivation of the model is as follows. The one-dimensional steady Euler equations for a

reacting (N2, N) mixture are

,( )dz pN3U = WN3

az _ = o (4.2b)

pu z d-p ----0 (4.2c)

a [,(E+,)] = o,

where (4.2a) is the balance equation for the N2 species and tbN3 is the production rate of the

N2 species with density PN2. Equation (4.2b) is the continuity equation, (4.2c) the momentum

equation and (4.2d) the energy equation, in which p, u, E and p are density, velocity, total

internal energy per unit volume, and pressure, respectively.

The production rate tbN_ of species N2 is the sum of the production rates for the two reactions

4We would like to acknowledge Andre Lafon for the original formulation and the earlier study used

in thls section; presented at the ICFD Conference on Numerical Methods for ]rlttid Dynamics, April

3-8, 1995, Oxford, UK.
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N2 + N2 _- 2N + N2

N2+N_2N+N

(4.3a)

(4.3b)

and are computed using the Park's model (Park 1985) that has been largely used for hypersonic

computations. See the Workshop on Hypersonics (1991) for some discussion. These reaction

rates involve an equilibrium constant, Keq (see below), which is determined by a polynomial

fitting to experimental data, and as such is only valid for a certain range of temperatures. In

particular, a cut-off value has to be introduced for low temperatures, a typical choice being

T,,i, = 1000K (Mulard & Moules 1991).

The system (4.2) and (4.3) must be closed by a thermodynamical representation of the

mixture. Here a simple model, with no vibrational effects, has been chosen. The details have

been omitted for brevity.

Equations (4.2b)-(4.2d) simply integrate to give

pu = q.o, (4.4a)

pu 2 + p = P_o, (4.4b)

H - E + p _ H**, (4.4c)
P

where H is the total enthalpy and q.o, Poo and H.o are all constants. Finally, denoting the mass

fraction of the N2 species by

PN, (4.5)
P

and using the Park's reaction rate model and the thermodynamical closure, (4.1) can be written

as

where

dz

= S(p,r,z)
1

--Mlqoop2TSexP(-_)

× [aAlz(1 - z) 2 - Alz 2 + 2aA2(1 - z) s - 2A2z(1 - z)],

4p Kcq = lO eexp[el+c2Z+e3Z 2 + c4Z 3 + eSZ4], Z -
M1Kcq'

(4.6a)

104

T (4.0b)
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Thedensityp is obtained from

q (8- - (10- 3z)e + =o (4.6¢)

and the temperature T from

with pressure

T B

Mip

R(2- z)p (4.6d)

The model uses the constants

qL
P

(4.6e)

I cl = 3.898

c2 --12.611

cs 0.683

c4 -0.118

Cs 0.006

M1 28 × lO s

AI = 3.7 × 10 Is

Az = 1.11 × 10 le

B = -1.6

0 = 1.132 × 10 s

e°z = 3.355×107
R = 8.3143

where qo., Poo and Hoo are input parameters set to be 0.0561, 158,000 and 27, 400,000,

respectively, in our calculations. A limitation of the model is T > T..,. = 1000K. In addition,

solutions are nonphysical if z _/[0,1], ifp < 0 or if p is complex.

Equation (4.6a) was integrated using the Euler, modified Euler, improved Euler, Heun (R-K

3), Kutta (R-K 3) and R-K 4 Runge-Kutta schemes. In each case the computations were

performed for a range of initial z and integration steps Az. The discretized equations were

preiterated 1000 steps before a full bifurcation diagram together with basins of attraction were

produced. (The computations were carried out on the CM-200 Connection Machine at the

Edinburgh Parallel Computing Centre, UK.)

There are two strategies possible when implementing the Runge-Kutta schemes. One is to

freeze the values of p and T at the beginning of each step when calculating ,.q(p, T, z) at the

intermediate stages. The other is to update the values at each evaluation of the function S. The

results presented here employ the latter strategy since this is the more proper implementation;

however, it is interesting to note (see below) that results obtained by freezing p and T for

intermediate calculations exhibit a slightly richer dynamical structure.

Figure (4.1) shows the results obtained from our calculations. In all of these plots the shaded

region denotes the basin of attraction in which combinations of initial z values and step size

Az converge to the fixed point, depicted by the solid black line. The unshaded regions indicate
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regionswherethe combinationsof z and Az do not converge to a physical solution of the

problem.

As can be seen in all cases the basins of attraction narrow considerably for the larger values

of Az. (Note that the axis scale is 10-5!) The explicit Euler scheme (Fig. 4.1a) obtains

the correct fixed point up to its stability limit, where there is a very small region of period

2 (oscillatory) behavior before it becomes nonphysical. Similar behavior is observed for the

improved Euler (Fig. 4.1c) and Kutta (Fig. 4.1e) schemes, the latter also exhibiting a much

more constricted basin of attraction for any given Az. The Heun scheme (Fig. 4.1d) exhibits a

distinct region of oscillatory behavior just above the linearized stability limit.

As is typical with the modified Euler scheme (Fig. 4.1b), a transcritical bifurcation occurs

at its stability limit which leads to a spurious (Az dependent) solution. Note also the solid

line at about z = 0.25 down on the plot, outside of the shaded region. This appears to be an

unstable feature picked up by our method of fixed point detection (comparison of initial data

with the 1000th iterate) and is unlikely to arise in practical calculations unless the initial data

are on this curve. The R-K 4 scheme (Fig. 4.1f) also exhibits a transcritical bifurcation at the

linearized stability limit; however this is discernible more by the sudden narrowing of the basin

of attraction since the spurious fixed point varies only slightly with Az.

Finally we note that if the values of p and T axe frozen for intermediate calculations the

dynamics are somewhat modified. All schemes with the exception of explicit Euler have a

slightly larger basin of attraction for values of Az within the stability limit and all schemes

have period two behavior at the stability limit, there being no transcritical bifurcations for any

of the schemes. The modified Euler scheme also has embedded period doubling and chaotic

behavior below the linearized stability limit.

What we have shown with this example is that, although the dynamical behavior is perhaps

not as rich as in some of our simple examples, spurious features can still occur in practical

calculations and so care must still be taken in both computation and in interpretation.

4.2. Convergence Rate & Spurious Dynamics of High-Resolution Shock-Capturing Schemes

We have seen in Section III elementary examples and references cited therein on how the

proper choice of initial data and the step size combination can avoid spurious dynamics. Yet

for other combinations the numerical solutions can get trapped in a spurious limit cycle. We

have also seen that the convergence rates of the schemes are greatly affected by the step sizes

that are near bifurcation points. Here we include the dynamics of full discretization of two

nonlinear PDE examples. The spatial discretizations are of the high-resolution shock-capturing

type (nonlinear schemes). This includes TVD and ENO schemes. Section 4.2.1 discusses how

this nonlinear scheme affects the convergence rate of systems of hyperbolic conservation laws.

Section 4.2.2 illustrates the existence of spurious asymptotes due to the various flux limiters

that are built in to TVD schemes.

51



4.2.1. Convergence Rate for Systems of Hyperbolic Conservation Laws

This section summarizes the results of Engquist & Sjogreen (1995) and Sjogreen (1996,

private communication). These results concern the convergence rate for discontinuous solutions

of a system of hyperbolic conservation laws. For a scalar nonlinear conservation law, the

characteristics point into the shock. According to the linear theory of Kreiss & Lundqvist

(1968), dissipative schemes damp out errors propagating backwards against the direction of the

characteristics. Thus it is reasonable to expect that the locally large errors at the shock stay in

a layer near the shock. In numerical experiments we usually obtain O(h p) convergence away

from the shock with difference schemes of formally p th order.

For the systems case, the same reasoning from the scalar conservation law cannot be applied.

In this case, we have other families of characteristics intersecting the shock causing the situation

to be more involved. Thus it is possible that the large error near the shock propagates out into

the entire post shock region by following a characteristic which emerges from the shock.

This effect cannot be seen in a simple scalar Riemann problem (problem with jump initial

data), because exact global conservation determines the post shock states. The system model

problem, taken from Engquist & Sjogreen (1995),

,,, + = 0,

vt + v. + g(u) = 0,

-oo < z < oo, 0<t

g(u) = (u + 1)(u - 1)(1/2- u)

gives an example of propagation of large errors. The function 9(u) has the properties

9(1) = 9(-1) = 9(1/2) = 0, and 9(u) 5_ 0 for -1 < u < 1 except at u = 1/2. The initial

data was given as

= { 1 • _<0-1 z > O ' vo(z) = l (4.7c)

so that the exact solution of the u equation is a steady shock. The eigenvalues of the Jacobian

matrix of the flux (u2/4, v) r for (4.7) are )h = u/2 and ,_2 = 1. The eigenvalue )h = u/2

corresponds to a strictly nonlinear field, and )_2 = 1 corresponds to a linearly degenerate field.

With this initial data (4.7c), it gives rise to a steady 1-shock, with the 1-characteristics having

a slope 1/2 to the left of the shock and a slope -1/2 to the right of the shock. These thus intersect

the shock when time increases. The 2-characteristics of the linear field, have slope 1 on both

sides of the shock. These characteristics thus enter the shock from the left and exit to the right.

The v component of the solution is passively advected along the 2-characteristics. When these

characteristics exit from the shock at z --- 0, an error, coming from poor accuracy locally at the

shock, is picked up and advected along with the solution into the domain z > 0. The shock

curve z = 0 ( in the z-t plane ) acts as an inflow boundary for the domain z > 0. The error

coming from the shock is similar to an error in given inflow data, and is therefore not affected
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by the numerical method used in the interior of the domain. Thus is not surprising that this

error is of first order, even when the equation is solved by a method of higher formal order of

accuracy.

Figure 4.2 shows the numerical solution, computed by a second-order accurate ENO method

using 50 grid points at the time T = 5.68. The points in the shock give a large error which is

coupled to the v equation through g(u). The exact solution for v is 1. Numerical investigation

of the convergence rate of the error in v to the right gave the exponent 1.047. One thus has

first-order convergence for this second-order accurate method.

Similar effects can be seen in computing the quasi one-dimensional nozzle flow. Engquist

& Sjogreen (1996) computed the solution on the domain 0 < z < 10 for a nozzle with the

following cross sectional area variation

A(z) = 1.398 + 0.347 tanh(0.Sz - 4). (4.8)

This problem is studied in Yee et al. (1985) for a class of explicit and implicit TVD schemes.

The solution has a steady shock in the middle of the domain. Figure 4.3 shows the error in

momentum for the steady-state solution on grids of 50, 100, and 200 points for a fourth-order

ENO scheme and a second-order TVD scheme. For the fourth-order method, the convergence

exponent is 3.9 before the shock and 1.0 after the shock, when going from 100 to 200 points.

For the second-order TVD the same quantities have the values 2.2 and 1.1 respectively.

Sjogreen (1996) recently conducted the same numerical study for the two-dimensional

compressible Euler equations for a supersonic flow past a disk with Mach number 3. The

equations were discretized by a second-order accurate uniformly nonoscillatory (UNO) scheme

(Harten 1986), which unlike TVD schemes, is formally second-order everywhere including

smooth extrema. He computes the error in entropy along the stagnation line for the steady-state

solution on grids with 33× 17, 65×33, and 129×65 grid points. The result is shown in Fig. 4.4,

where the error and convergence exponent in the region behind the bow shock are plotted. The

convergence exponent is between the 65 × 33 and 129 × 65 grids. The disk has radius 0.5, and

it is centered at the origin, which means that the line is attached to the wall for --0.5 < z. A

convergence exponent of 1.5 is observed for this formally second-order method.

4.2.2. Spurious Dynamics of TVD Schemes for the Embid et al. Problem s

It has long been observed that the occurrence of residual plateauing is common when TVD

and ENO types of schemes are used to time march to the steady state. That is, the initial

decrease in the residual levels out and never reaches the convergence tolerance. See Yee ( 1986,

1989) and Yee et al. (1990) for some discussion. This has often been overcome by ad hoc

modification of the flux limiter or similar device in problem regions.

sWe would like to acknow]edge Paul Burton for the computations used in this section.
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A recent study (Burton & Sweby 1995) investigated this phenomenon using a dynamical

systems approach for the one-dimensional scalar test problem of Embid et al. (1984)

it

z E (0,1), (4.9a)

with boundary conditions

u(0) = 1, u(1) =-0.1. (4.9b)

This equation with the flux function f(u) = u2/2 has the property that there are two entropy

satisfying steady solutions, consisting of stationary shocks jumping between the two solution

branches

ut(z) = 3z(z - 1) + 1

u"(z) = 3z(z - 1) - 0.1.

(4.10a)

(4.10b)

For this problem the two possible solutions consist of a single shock, either approximately at

zl = 0.18 or z2 = 0.82. It can then be shown (see Embid et al. 1984 for details) that the

solution with a shock at z_ is stable to perturbations while the solution with a shock at zz is
unstable.

Embid et al. solved (4.9) using three different methods, the first-order implicit upwind

scheme of Engquist and Osher, its second-order counterpart, and the second-order explicit

MacCormack scheme. All three schemes used time stepping as a relaxation technique for

solving the steady-state equation. The initial conditions were taken to follow the solution

branches (4.10) from the boundary values, with a single jump between the two branches. The

results obtained showed that, although the implicit schemes allowed large time steps and hence

fast convergence, if the initial jump was taken too near the unstable shock position z2, then for

some ranges of Courant number,

At

c = u Az' (4.11)

the schemes would converge to the physically unstable shock. This phenomenon was studied

both for these three schemes and a variety of flux limited TVD schemes (Sweby 1984) in Burton

& Sweby (1995), where not only the full problem was studied but also a reduced 2 × 9. system

was investigated using a dynamical system approach. We report on this investigation here.

The schemes investigated were explicit and implicit versions of the Engquist-Osher and

TVD flux limiter schemes using the minmod, van Leer, van Albada and superbee flux limiters.

In all cases a method of lines implementation was adopted, the spatial discretization being

performed separately from the time discretization. (This is necessary so that the final state

does not depend on the Courant number, which would be the case if a Lax-Wendroff type
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discretization were used.) For the time discretization, forward Euler was used for the explicit

implementations while linearized implicit Euler was used for the implicit computations. For
the second-order flux limiter schemes the Jacobian matrix used was taken to be that of the

first-order Engquist-Osher in order to allow easy inversion.

The schemes are

(a) Explicit Scheme

,,;÷' : ,,;'- _,',-(s;÷,+ s2) + A_g(=),,;,

_a_ [¢(,_)(A5+ _)+ - _(,J-+,)(_5+ ,1-)-],
(b) Linearized Implicit Scheme

(4.12)

1

2_a-[¢(,_)(A5+ i )+_ ¢(,2÷,)(A5÷_)-],

where .f]: are the Engquist-Osher numerical fluxes

(4.13)

(4.14a)

(4.145)

The flux differences are given by

(_5+_) + = -(s_:, - s(-j+,)), (_5+_)- = (s; - s(-j)),
and the solution monitors by

"_:= r[(aS__)'(_fj+l) ±]

4-1

Finally, J is the Jacobian matrix and the flux limiter ¢(r) is one of

(4.15)

(4.16)

$0(r) = 0 --- first-order Engquist-Osher (E-O) scheme,

¢l(r) = max(0, rain(r, 1)) --- the minmod limiter,

¢2(r) = max(0, min(2r, 1), rain(r, 2)) --- Roe's superbee limiter,

r+,
¢_L(,') -

l+r

r+r 2

evA.(1") - 1 + _

van Leer's limiter,

van Albada's limiter.

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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The experiments reported in Burton & Sweby (1995) used a grid spacing of Az = 0.025

with initial conditions consisting of a single jump between the solution branches (4.10) near

either the stable shock (zl) or the unstable shock (22). The convergence criterion used was the

following bound on the residual

__, u_ +1 - u_ _ 10 -15, (4.22)
J

with an upper limit of 2000 iterations being performed.

The results of applying these schemes to problem (4.9) largely echoed those reported by

Embid et al. For the explicit schemes convergence, when it occurred, was to the stable shock.

It was found that there were regions of Courant number (e < el) for which the schemes

converged, regions (el < c < ej) for which convergence did not take place using (4.22) within

2000 iterations, and regions (e > cj) for which the schemes were unstable. This is summarized

in Table 4.1. The absence of an entry in Table 4.1 corresponds to residual plateauing.

Notice that for the superbee flux limiter there was no range of Courant numbers for which the

scheme converged. Closer inspection reveals residual (defined as r '_ = [u '_+1 - u"l) plateauing

at around 10 -3. For the other schemes when ci < c < cj the nonconvergence observed arises

from a similar process, except that the residual does not necessarily level out completely, but

decreases at a very gradual rate, resulting in very slow convergence.

The implicit scheme experiments revealed that the choice of initial conditions could cause

convergence to the unstable shock for certain ranges of Courant number. For an initial jump

near the stable shock, the schemes (with the exception of the van Leer limiter) converge to

the stable shock for e < 11. However, for an initial discontinuity near the unstable shock,

convergence could sometimes be towards the unstable shock. The situation is summarized in

Table 4.2, where again the absence of an entry corresponds to residual plateauing.

To gain further insight into this problem, Burton & Sweby (1995) considered a reduced

problem consisting of two free points at one of the shocks, with exact solution values being

imposed as boundary conditions on either side. This then leads to a two dimensional dynamical

system which, although obviously a gross simplification of the full problem, was hoped to still

maintain some of the qualitative behavior.

The situation is as shown in Fig. 4.5, where the free points are X and Y, the remaining

points (Uu, Ut, U,.,. and U,.) being set at exact analytic values to provide boundary conditions.

Two such values are needed on either side to provide the necessary information for the flux

limiters. Substitution of these points into the numerical scheme then leads to a two-dimensional

system. For example, the explicit Engquist-Osher scheme yields
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At
X"+ l = X '_ _ __

40

At
y.+l = yn _ __

4O

[f-(Y") + - f-(X n) - f+(Ut)] -

] 39
f+(x") t.x

n

36 .f-(U,.) + f+(Y")- f-(Y'_) - f+(X n) - -_AtY ,

(4.23a)

(4.23b)

where a step size of Az = _ has been used.

For the first-order explicit and implicit schemes some analysis on the reduced problem can be

performed. Table 4.3 summarizes the findings. Note that for both schemes spurious fixed points

are introduced by the simplification of the problem. These both have X and Y of the same

sign and would not be tolerated for the full problem. It is only the proximity of the boundary

conditions for the reduced problem which allow them to exist as fixed points. However, the

remaining fixed points and their stability agree well with numerical results obtained for the full

problem.

Analytical results could only be obtained for the first-order scheme and so numerical

experiments were performed for the flux limiter schemes. These consisted of generating

bifurcation diagrams for X and Y against At and the plotting of basins of attraction in the

(X, Y) plane for fixed values of At. The explicit schemes were shown to possess no spurious

dynamics below their respective stability limits, apart from that introduced by the simplification

of the problem (i.e. outside of the quadrant (X > 0, Y < 0)). As At was increased above the

stability limit the schemes entered a period of bifurcation and chaos accompanied by a dramatic

shrinkage in the numerical basins of attraction.

The dynamics of the implicit schemes at the unstable shock showed the falsely stable fixed

point becoming stable for large values of At. For all the limiters tested the stabilizing of

the fixed point was accompanied by the introduction of additional, spurious (period 2) fixed

points. These spurious solutions caused a reduction in size of the basin of the falsely stable

fixed point. The fact that the more compressive limiters took longer to recover from the effects

of the spurious fixed points seems a possible cause of the phenomenon of residual plateauing

experienced in the full problem. Due to a space limitation, see Burton & Sweby (1995) for the

illustrations.

It must be realized that although the residual plateauing illustrated is around the physically

unstable shock (to which we would usually not wish to converge), the fact that it is not a

repelling phenomenon will in itself have repercussions on convergence to the correct, physically

stable shock. Indeed no such nonconvergence was observed for Courant numbers greater than

11. We conclude this section by emphasizing that the reduced problem indicated a possible

cause for residual plateauing. However, for certain situations the dynamics of the full problem

does not coincide precisely with that of the reduced problem.

57



4.2.3. The Dynamics of Grid Adaption

Consider a model convection-diffusion equation of the form

,,, + = (4.24)

with the linear case, f(u) = u and the nonlinear case, f(u) = _ul 2 (the Burgers equation)

respectively. The boundary conditions for the linear case are u(0, t) = 0 and u(1, t) = 1

and for the nonlinear case, u(0, t) = 1 and u(1, t) = -1. These boundary conditions result

in steady-state solutions of a boundary layer at z = 1 and a viscous shock at z = 1/2,

respectively. In both cases the steepness of the feature is governed by the diffusion coefficient

parameter e. Besides its steepness feature, one of the main reasons for considering the linear

convection-diffusion equation is to show that grid adaptation alone and/or nonlinear schemes

such as TVD schemes can introduce unwanted dynamics to the overall solution procedure. The

authors realize that model (4.24) is not the best model to illustrate the dynamics of the studied

schemes since the model is not stable under perturbations. However, it serves to show what

type of spurious numerics would occur under such an environment.

One common criterion used for grid adaptation is the equidistribution of a positive definite

weight function to(z, t), often taken to be some monitor of the numerical solution u(z, t) of

the underlying PDE. A grid ze < zl(t) < .-- < zj-l(t) < z j, where z0 and z.r are fixed,

equidistributes w(z, t) (at time t) if

t)dz = ,.(z, t)dz 1 t)dz,
x "1 i -_- "_

(4.25)

for j = 1,... , J. A one-parameter family of weight functions

e [0,1], (4.26)

can be chosen where a = 1/2 corresponds to equidistribution in the arc-length and a = 0

yields a uniform grid. Approximating w(z, t) to be constant in each interval (zj__, z_ ) yields

(4.27)

Given a numerical solution of the PDE we can approximate the derivatives by

u.l__x,2,/ _u_-u_-' (4.28)
zj - zj-I

Equation (4.27) is nonlinear in {z./} if we use (4.28). However, (4.27) is linear in {z i} if {z./}

in (4.28) uses the existing grid. In this case we can solve the tridiagonal system (4.27) for a new

set of {zj} to obtain an updated grid.
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Givena setof initial dataandan initial grid, the procedure is to numerically solve the PDE

and (4.27) in a time-lagged manner. We use nodal placement and the 12 norm of the solution

to illustrate our results. We use the previous time step value for zj in (4.28) to achieve a linear

tridiagonal system for the updated grid in (4.27). Our preliminary study shows that the solution

procedure of Ren and Russel (1992), and Budd et al. (1995a) in solving the coupled PDE and

(4.27) are less stable than the present linearized form. See also Neil (1994) for a similar study

and conclusion. The regridding strategy adopted was to regrid after every time step of the

PDE method, either interpolating updated solution values from the old grid or performing no

adjustment at all due to grid movement. This latter approach in effect presents the PDE method

with new initial data to the problem at each step.

The dynamics of the above one-parameter family of mesh equidistribution schemes coupled

with different spatial and time discretization were studied numerically in Sweby & Yee (1994)

and Yee & Sweby (1995a,b) using the above numerical procedure. The spatial discretizations

include three-point central, second-order upwind and second-order TVD schemes. The time

discretizations include explicit Euler, second- and fourth-order Runge-Kutta and the linearized

implicit Euler methods. In a parallel study, Budd et al. (1995b) made use of the AUTO computer

bifurcation package (Doedel 1986) to obtain bifurcation diagrams for similar grid adaptation

methods for the steady part of the above PDEs with a different form than (4.27). However,

the dependence on known solutions of the discretized PDEs and grid equations as starting

values limits its usage. In Sweby & Yee (1994) we utilize the power of the highly parallel

Connection Machine CM-5 to undertake a purely numerical investigation into the dynamics of

the time-marching adaptive procedure.

We divided a chosen parameter space (e.g., e) into 512 equal intervals, with all other

parameters (a, At, initial data) fixed. For each chosen parameter value, we iterated the

discretized PDE and the grid function, in general, 4000 steps (8,000 steps for explicit methods)

to allow the solution to settle to an asymptotic state. Then we performed a series of time

step/regridding stages, during which we investigated the dynamics by producing an overlaid

plot of the 12 norms of the numerical solution and the grid distribution at each step. This

resulted in a bifurcation type diagram or the grid displacement diagram as a function of the

physical or discretized parameters. We also performed numerical studies by only preiterating

the discretized PDEs to the steady state for a fixed grid before solving both the discrefized PDE

and the grid adaptation function. We found in most cases the solution process is less stable and

more likely to get trapped in a spurious mode than in the aforementioned process.

For this study, we took into consideration the grid density, an even and odd number of nodes,

and whether or not there is interpolation after each regridding. The grid density studies consist

of 4, 5, 6, 9, 10, 19, 20, 49 and 50 grid points. There is no apparent sign of even or odd grid

dependence. The resolution and stability of TVD schemes are also grid independent. However,

the central difference scheme experienced instability more often for coarser grids, and the

second-order upwind is slightly more stable, with better resolution than the central scheme. As

expected, the stable time step required for the explicit methods was orders of magnitude lower
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thanthatfor theimplicit method. For the TVD schemes, comparison of the dynamical behavior

of the five limiters of (3.50) of Yee (1989) was performed. Four of the limiters are the same as

(4.17)-(4.21). Due to the simplicity of the PDEs, their dynamical behavior is similar, although

there were slight differences in the stability and resolution. Due to space limitations, we

summarize the results without presenting the actual computational figures. Interested readers

should refer to our original papers for details.

Summary: We consider separately the cases "with" and "without" interpolations. The term

"scheme" from here on means the overall adaptive scheme procedure.

(a) No Interpolation: For the linear problem, the behavior of the adaptive TVD schemes is

similar to that of the classical shock-capturing methods. As opposed to the uniform grid case,

the adaptive TVD schemes without interpolations behave rather poorly in terms of stability and

allowable • values. See Figs. 11 and 12 of Yee & Sweby (1995b). The solutions refuse to settle

down for larger At and/or smaller e. For the nonlinear problem, the behavior of the adaptive

TVD schemes is similar to that of the uniform grid case. The range of allowable e and At in

terms of stability and convergence rate and settling of the grid distribution are far better than in

the linear problem. It appears that for problems with shocks, adaptive TVD schemes prefer no

interpolation after each regridding. See Figs. 13 and 14 ofYee & Sweby (1995b).

(b) With Interpolations: For the linear problem, as expected, both adaptive TVD schemes

and adaptive classical schemes behave in a similar manner in terms of stability and convergence.

Adaptive TVD schemes are less stable and have a smaller allowable range of • than the uniform

grid case. Overall, adaptive TVD schemes behave far better than their counterparts without

interpolation for the linear problem as can be seen in Figs. 11 and 12 ofYee & Sweby (1995b).

For the nonlinear problem, the adaptive TVD schemes with interpolations behave like the

classical shock-capturing method. They experience nonconvergence of the solution, and the

grid distribution cannot settle down for a certain range of At. This can be seen in Figs. 13 and

14 of Yee & Sweby (1995b).

It is surprising to see the opposite behavior of the adaptive implicit TVD schemes for the two

model PDEs with and without interpolation combinations, especially when the same physical

parameters, discretized parameters and initial data were used.

4.3. Mismatch in Implicit Schemes for Time-Marching Approaches

When implicit methods are used to time-march to the steady states, it is a common practice

in CFD to use a linearized and/or a simplified implicit operator (or mismatched implicit/explicit

operators) to reduce operation count. The simplified implicit operators usually are first-order

and the explicit operator retains higher order spatial accuracy. The simplified implicit operator

might not be consistent with the original implicit scheme. It might also be nonconservative

even though the original and/or the explicit operator are conservative. One popular formulation

with these mismatched implicit/explicit operators is the "delta formulation" of Beam &

Warming (1978) in conjunction with implicit LMMs time discretizations. The logic is that
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if thesolutionconverges,the explicit operatordictatesthe final accuracyof the steady-state
numericalsolution. As discussedin Section2.4, thesemismatchedimplicit/explicit operators
might induce unwantedspuriousdynamics into and/or reduce the convergence rate of the

overall solution procedure. To illustrate just this point, we summarize some old work of Mulder

& van Leer (1984) and the first author's experiences (Yee 1986, 1989, 1990) in selecting the

more desirable mismatch operators. These works use the delta formulation with a variant of

the f'trst-order upwind spatial discretizations for the implicit operator. The time discretization is

the implicit Euler with the noniterative linearized form as discussed in Section 3.5.2. After the

linearization in time and the drop in spatial discretization to first order, there are many ways to

approximately evaluate the Jacobian matrix associated with the linearization for high-resolution

and higher-order upwind shock-capturing schemes. Due to a space limitation, the readers are

referred to the original papers for details or Yee (1989) for a summary.

Mulder and van Leer studied two first-order upwind spatial discretizations (van Leer's

differentiable and Roe's nondifferential forms) for the implicit operator and a first-order or

second-order upwind spatial discretization for the explicit operator. They concluded that the

differentiable first-order upwind implicit operator gives quadratic convergence for flow of an

isothermal gas along an almost circular path through the stellar gravitational field of a rotating

two-armed spiral galaxy. The governing equations are a system of hyperbolic conservation

laws. With Roe's nondifferentiable split flux-differences the iterations may get trapped in a

limit-cycle. For a comparison of the two implicit operators, they used the same grid, physical

parameters, explicit operator, initial data and numerical boundary treatment.

Yee (1986) constructed conservative and nonconservative linearized forms of implicit TVD

schemes. A rather detailed study on the convergence properties of these forms was performed.

Using the same notation as the original paper, both the linearized nonconservative implicit (LNI)

and the linearized conservative implicit (LCI) forms can be of first or second-order accurate

in space. Numerical experiments in Yee et al. (1985), Yee (1986), Yee & Harten (1987) and

Yee (1989) showed that both the second-order LNI and LCI forms are very unstable even if

a very small time step is used. The first-order LNI and LCI perform far better. However, the

first-order LCI form is more stable and has a better convergence rate than the LNI counterpart.

The first-order LNI form has a higher chance of converging to a npnp.hysical solution. Also

the residual sometimes stagnates or gets trapped in a limit cycle. These conclusions are based

on comparing the two forms for a variety of one-dimensional and two-dimensional practical

problems containing complex shock waves. For both LCI and LNI forms, the more compressive

limiters, such as the superbee, are very unstable. The residual stagnates even with very small

time steps. See Yee et al. (1990) for their performance for hypersonic computations. Grid

ref'mement in this case does not improve the situation. Again, in order to isolate the cause of

the convergence problem, the same grid, physical parameters, explicit operator, initial data and

numerical boundary condition treatment were used. In passing, both the first-order LCI and

LNI are heavily used in the CFD community with TVD schemes other than the Harten & Yee

type (Yee 1989). This includes but is not limited to the various UNO, ENO and high-order

upwind schemes for the explicit operator.
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The aboveconvergencepropertiesusingpseudotime marchingapproachesin conjunction
withhigh-resolutionimplicit TVD schemescontributedtoyetanotherkindof spuriousnumerics,
whichareverydifferent from that in Sections 4.1 and 4.2.

V. Spurious Dynamics in Unsteady Computations

In Section 3.8, we cited some of the spurious numerics in transient computations. We have

also learned that numerics can introduce and suppress chaos and can also introduce chaotic

transients, the danger of relying on numerical tests for the onset of turbulence and chaos

is evident. Here, some examples from CFD computations that exhibit analogous spurious

behavior are illustrated. Sections 5.1, 5.2 and 5.4 are written by the authors of the original work.

Laurence Keefe of Nielsen Engineering summarizes his unpublished work on chaotic transient

computation that he performed in the late 1980's. Shi Jin of the Georgia Institute of Technology

summarizes his recent work on oscillations induced by numerical viscosities. Shi's work has

an important implication in spurious dynamics using time-marching approaches as well as

slowly moving shock waves in transient computations. Section 5.3. summarizes the work of

Brown & Minion (1995). It is concerned with spurious vortices in two-dimensional thin shear

layer incompressible flow simulations using high-resolution shock-capturing methods. Bjorn

Sjogreen of the Uppsala University, Sweden summarizes his work on convergence rate for

systems of hyperbolic conservation laws in transient computations in Section 5.4. For additional

results concerning other issues, see Moore et al. (1990), Corless (1992, 1994), Poliashenko &

Aidun (1995) and Read & Thomas (1995).

A brief background on chaotic transients and the significance and implications of Keefe's

work on numerical uncertainties are needed before presenting his results. Loosely speaking,

a chaotic transient behaves like a chaotic solution (Grebogi et al. 1983). A chaotic transient

can occur in a continuum or a discrete dynamical system. The concern here is "numerically

induced chaotic transients" or " spurious chaotic transients". One of the major characteristics

of a numerically induced chaotic transient is that if one does not integrate the discretized

equations long enough, the numerical solution has all the characteristics of a chaotic solution.

The required number of integration steps might be extremely large before the numerical solution

can get out of the chaotic transient mode. In addition, even without a numerically induced

chaotic transient behavior, standard numerical methods usually experience a drastic reduction

in step size and convergence rate near a bifurcation point (in this case the transition point)

in addition to the bifurcation points due to the discretized parameters. See Section III for

a discussion. Consequently, the possible numerically induced chaotic transient is especially

worrisome in direct numerical simulations that are near the onset of turbulence. Away from

the transition point, this type of numerical simulation is already very CPU intensive and the

convergence rate is usually rather slow. Due to the limited computer resources, the numerical

simulation can result in chaotic transients indistinguishable from sustained turbulence, yielding

a spurious picture of the flow for a given Reynolds number. Thus, the danger of relying on

numerical tests for the onset of turbulence is evident.
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5.1. Chaotic Transients Near the Onset of Turbulence

in Direct Numerical Simulations of Channel Flow

Numerical simulations of wall-bounded turbulent shear flows have proven to be a powerful

tool for investigating both the physics and mathematics underpinning these practically important

flows. Boundary layers and turbulence are inescapable in aeronautical applications, and simple

flows over a flat plate or within a channel provide an accessible arena in which to understand

turbulent dynamics and to test ideas for its modification and control that can benefit the

performance of real aircraft.

Direct numerical simulations (DNS) of turbulent channel flow are the best developed of

these techniques, with a better than 20 year history (Deardorff 1970, Schumann 1973, Moin &

Kim 1982), and a relatively quick maturity (Kim et al. 1987) due to the favorable mapping of

high accuracy spectral methods onto the geometry and known phenomenology of this flow. The

physical situation is depicted in Fig. 5.1, where a flow is confined between planes at y = +1

and is driven in the z-direction by a mean pressure gradient dp/dz. The flow is characterized

by a Reynolds number ,Re = U,,oL/v, where U.o is the mean centerline velocity,/_ is the

channel half-height, and v is the kinematic viscosity. Within the channel the flow satisfies

the incompressible Navier-Stokes equations and the no-slip boundary conditions are applied

at the walls. In the particular calculations shown here these equations have been manipulated

into velocity-vorticity form, where one integrates equations for the wall-normal velocity v, and

normal vorticity r/and recovers the other two velocity components from the incompressibility

condition and definition of r/.

where

_A v =h,+

0 1 2
_n = hg + _-_A

(5.1a)

(5.1b)

f + _-- = 0 (5.1c)
oy

Ou 0w 01, Ow
f---- O--z + O----z' rl = tgz Oz (5.1d)

h.- tgy\--_--z + az ]+ -ffz-iz2+-ff_z 2 H2 (5.1e)

OH1 cgHs

hg- Oz tgz (5.1f)

Here the Hi contain the nonlinear terms in the primitive form of the Navier-Stokes equations

and the mean pressure gradient.
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Two experimentally observed facts figure strongly in the choice of numerical method used

to integrate the Navier-Stokes equations in this geometry: the velocity increases extremely

rapidly normal to the wall, and turbulent channel flows are essentially homogeneous in planes

parallel to the wall. The first requires a concentration of grid points near the wall, and the

second suggests use of a doubly periodic domain in planes parallel to the wall. Happily, a high

accuracy spectral representation of the velocity field (u, v, w) meets these needs:

where the Tt(V) are Chebyshev polynomials. The numerical problem then becomes dependent

on a and/_ in addition to Re. For time advance mixed explicit-implicit methods are used.

The nonlinear terms in the equations are advanced using second-order Adams-Bashforth or a

low storage, third-order Runge-Kutta scheme (Spalart et al. 1991), while the viscous terms are

advanced by Crank-Nicholson. The algorithm based on this spectral spatial representation and

mixed time advance has been tested and used extensively, demonstrating an ability not only to

reproduce experimental results, but to go beyond them in elucidating flow features not easily

investigated in experiments. This code, and ones similar, (Handler et al. 1989, Jung et al. 1992)

are currently being used to investigate a variety of turbulence control ideas suitable for turbulent

drag reduction and (conceivably) separation control.

One of the central problems in studies of wall bounded shear flows is the determination

of when a steady laminar flow becomes unstable and transitions to turbulence. In dynamical

systems' terms, the Navier-Stokes equations always have a fixed point solution for low enough

Reynolds numbers, but for each flow geometry the Reynolds number at which this fixed point

bifurcates needs to be determined. In channel flow the f'LXed point solution (a parabolic velocity

profile across the channel, u(l/) = (1 -//2)) becomes linearly unstable at Re = 5, 772 (Orszag

1971). However, since turbulence appears in experiments at much lower Reynolds numbers,

it was conjectured that this bifurcation must be subcritical. Subsequent numerical solution

of the nonlinear stability equations (Herbert 1976, Ehrenstein & Koch 199 I) demonstrated

this to be true, showing that limit cycle solutions with amplitude ¢ branch back to lower

Reynolds numbers before subsequently passing through a turning point and curving back

toward higher Reynolds numbers. Thus for Reynolds numbers just above the turning point the

flow equations have at least four solutions: the fixed point; two unstable limit cycles; and a

chaotic solution (experimentally observed turbulence). Determining the location of the turning

point in (a, t, ¢, Re) space is known as the minimum-critical-Reynolds-number problem, and

its solution is by no means complete.

One way to investigate the turning point problem is to perform DNS of channel flow for

conditions believed to be near this critical condition. Beginning with a known turbulent initial

condition from higher Reynolds number, one integrates the flow solver in time at the target

Reynolds number to determine whether the flow decays back to the fixed point or sustains itself

as turbulence. Although this may not be the most efficient way to bracket the turning point,

it has the advantage that the peculiar dynamics of the flow near the turning point, whether in
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decay or sustained turbulence, are observable, and this yields information about the path along

which flows become turbulent at these low Reynolds numbers.

Unfortunately the flow dynamics are very peculiar near the turning point, and extremely

long chaotic transients are observed in the computations that make a fine determination of that

point all but impossible by this method. This can be seen in Fig. 5.2, where a time history of

the turbulent energy in a channel flow (energy above that in the laminar flow) is plotted for a

Reynolds number of 2,191. To understand the time scale of the phenomenon some experimental

facts need to be recalled. In typical experimental investigations of channel flow, the infinite

transverse and streamwise extent of the ideal flow are approximated by studying flow in high

aspect ratio (10-40) rectangular ducts that typically are 50-100 duct heights long. If times

are non-dimensionalized by the centerline mean velocity Uo_ and the duct half height Z, then

statistics on turbulence are gathered by averaging hot-wire data over intervals AtUoo/L .._ 200.

In the simulations and figure the time scale is based on the friction velocity u,- and L, where

typically 15-20 u_- _ Uoo. Thus averaging over intervals Atu_/L _ 10 should and does yield

stable flow statistics that compare well with experiments. This can be seen in Figs. 5.3-5.5,

where the near-wall velocity profile, cross- channel turbulence intensities, and Reynolds and

shear stress distribution for the Atu_/L _ 10 interval near the end of the transient, delineated

by the arrows in Fig. 5.2, are shown. In each case they correspond well to available experimental

data. Yet look at the time scale of the transient; it spans Atu_/L _ 300, thirty times longer than

the time needed to obtain stable statistics that would convince most experimentalists that they

are viewing a fully developed turbulent channel flow. This is further complicated by the wide

variation of the transient length, dependent upon both the grid resolution (number of modes in

the spectral representation) and the linearly stable time step of the integration. In fact, for fixed

(a, t, Re) it is possible to obtain sustained turbulence for one time step, but see it rapidly decay

to the laminar flow for another, lower value of the step.

Extended chaotic transients near bifurcation points are not an unknown phenomenon; the

"meta-chaos" of the Lorenz system is but one of many known examples. However, the

practicalities of numerical computation in fluid dynamics usually interfere with ones ability

to discern whether a transient, or sustained turbulence, is being calculated. The computations

required to obtain the transient plot in Fig. 5.2 needed 40 hours of single processor time on

a Cray XMP, some ten years ago. Such a small amount of expended time was only possible

because the spatial resolution of the calculation was relatively coarse (32 x 33 x 32), in keeping

with the large scales of the phenomena expected at these flow conditions. Higher resolution

calculations (192 x 129 x 160) (Kim et al. 1987) at greater Reynolds numbers typically have

taken hundreds of hours (,-_ 250) to barely obtain the Atu_/L = 10 averaging interval that is

so inadequate for detecting transients. Because such calculations are so time consuming, one

typically chooses an integration time step that is a substantial fraction of the linear stability

limit of the algorithm, so as to maximize the calculated "flow time" for expended CPU time.

However, it is clear from these transient results that this practice has some dangers when close

to critical points of the underlying continuous dynamical system. Thus it appears that just as

pseudo-time integration to obtain steady solutions can result in spurious results, genuine time
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integrationcan result in chaotic transients indistinguishable from sustained turbulence, also

yielding a spurious picture of the flow for a given Reynolds number.

To conclude this section, here we give a feel for the number of integration steps required for

the above numerical solution to get out of the chaotic transient mode. This transient calculation

was performed using a time step of .0025. In these same units (time scaled by wall friction

velocity u,- and channel half height L) the transient calculation length was 409.6. Thus this

calculation extended over 163,840 time steps.

In Keefe et al. (1992) the dynamics of the computation in terms of "dimension" and

"Lyapunov exponent" calculations were performed at a higher Reynolds number Re = 3200.

For this higher Reynolds number, a transient occured using a smaller time step of 0.0015 and

a transient calculation length of 644.52 or 429,680 time steps. To examine if chaos occured,

Keefe et al. then took a central portion of that calculation at around 45,600 time steps and

computed the Lyapunov exponent hierarchy from it. See Keefe et al. for additional details.

5.2. Oscillations Induced by Numerical Viscosities in I-D Euler Computations

5.2.1. Introduction

Earlier work has reported the difficulty of computing slowly moving shocks (Robert 1990,

Woodward & Colella 1984), where first-order Godunov or Roe-type methods produce spurious

long wave oscillations behind the shock and eventually ruin the downstream pattern. Here

slowly moving means that the ratio of the shock speed to the maximum wave speed in the

domain is much less than one. Several heuristic arguments, or improvements on the Riemann

solver have been made in Arora & Roe (1996), Jin & Liu (1996), Liu (1995) and Woodward &

Colella (1984). To investigate the dynamical behavior of shock-capturing methods for slowly

moving shocks, we review the work of Jin and Liu (1996) using the traveling wave analysis

and stability theory of discrete shocks. The goal is to carefully study this peculiar numerical

phenomenon and to understand its formation and propagation, instead of solving this problem.

Recall that the definition of a discrete traveling wave solution _, an approximation of

U(zj, t.), t. = nAt, requires

o (5.3)= t_j__np _

where

,,At/az = r,/q, (5.4)
with J the wave speed for some relative prime integers p and q. During a numerical calculation

condition (5.4) may not hold. In other words, at different times the numerical viscous profiles

correspond to different families of the traveling waves. It was shown by Jin and Liu that,

at different time steps the numerical solutions correspond to different traveling wave profiles,

unless (5.4) is met. The downstream oscillations are generated by such perturbations of the

discrete traveling wave profile. The oscillations propagate along characteristics and behave
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diffusively (decay in 12 and Lo.). The perturbing nature of the viscous shock (traveling wave)

profile is the constant source for the generation of the downstream oscillations for all time.

In their numerical experiments they also observed the periodic structure of the perturbing

viscous shock profile. The period is essentially the time for the shock to propagate one spatial

grid cell.

In Section 5.2.2 a numerical example, using a Roe-type upwind scheme on a Riemann

problem of the compressible Euler equations that admits slow shocks, is given. Among the

numerical artifacts observed in this example are the momentum spikes at the shock, and the

downstream oscillations. They are indeed numerical artifacts. The momentum spike is generated

by the artificial numerical viscosity introduced in the continuity equation, which does not exist

in the physical Navier-Stokes equations. The downstream oscillations are introduced by the

dynamical behavior of the numerical viscous traveling wave profile. In Section 5.2.3 a traveling

wave analysis on a "viscous isentropic Euler equations" formulation (Euler equations with a

special linear viscosity term in both the continuity and momentum equations) is presented to

show the existence of the momentum spike. This is compared with the momentum profile of the

Navier-Stokes equations, which does not have the spike. In section 5.2.4 the dynamics of the

downstream oscillations will be examined, and its relation with the stability and perturbation of

the discrete shocks will be established. For details see Jin & Liu (1996).

5.2.2. Numerical Solutions of a Slowly Moving Shock

Consider the one-dimensional compressible Euler equations of gas dynamics,

o,p + 0.,. = o, (5.5a)
a,m + a.(_' + p) = 0, (5.5b)

o,E + a, [u(E + p)] = o. (5.5,)

Here p, u, rn, p and E are respectively the density, velocity, momentum, pressure and total

internal energy per unit volume with rn -- pu. For an ideal gas, the equation of state is given by

p= ('7- 1)(_- i_")" (5.6)

Let F be the flux function for (5.5) and let .4 denote the Jacobian matrix OF(U)/OU with

U = (p, m, E) T. The Euler equations (5.5) are hyperbolic with eigenvalues

a 1 = u - c, a = = u, a s = u + e, (5.7)

where e = V/-_/# is the local speed of sound. The right eigenvectors of A form the matrix

R = (R 1 , R 2, R s ) given by

1 1 1 ]

R = u - c u u + c J , (5.8)i 2 H+uctI - uc _u
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with H --

by

with

,.2 U3

-r-1 + -Y" The inverse of R defines the left eigenvectors (L 1, L 2, L s) = R -1 of A

R--1 = 1 - bl /_u ,

 b2J
(5.9)

/__ 7-1 u 2
c2 ' bl = b2 (5.10)

Let Aj+_/_ be the Roe matrix satisfying (Roe 1981)

F(Ui+I ) - F(Uj) = fi-..i+l/,(Uj+, - Uj). (5.11)

By projecting Uj+1 - Uj onto {Rj+I/2} one obtains the characteristic decomposition

$

Uj+, - Uj = _ c_j+a/,R_.+,/,. (5.12)
p=l

In this decomposition the local characteristic variables a Pj+_/2 can be obtained using Roe's

average which perfectly resolves stationary discontinuities.

Let zj+l/2 be the grid points, Uj+I/2 be the pointwise value of U at z = zj+l/2, and Uj be

the cell center value of U at zj = (zj+l/2 + zj_l/_). A first-order upwind, Roe-type scheme

(Smoller 1983), hereafter called UW, will be used to illustrate the phenomenon, although this

phenomenon occurs for basically all shock-capturing methods. The numerical flux in UW is

defined by

= - Rp

where _ is the component of F(g.i ) in the p-th characteristic family,

$

(5.13b)

p 1

Ezample: A Riemann problem using the following initial data (Roberts 1990) will be solved.

In this problem, there is a Mach-3 shock moving to the right with a shock speed • = 0.1096:

UL =

3.86

-3.1266

27.0913
if 0_<z<0.5; UR=

1

-3.44

8.4168
if 0.5 _< z _< 1.(5.14)

Here 7 = 1.4 and the results at t = 0.95 are displayed in Fig. 5.6. The computation is carried

out in the domain [0, 1] with A2 = 0.01, At = 0.001. One can see that there is a momentum

spike and the post-shock solution is oscillatory.
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5.2.3. The Momentum Spikes

A traveling wave analysis on the "viscous Euler equations" shows precisely the formation

of the momentum spike. Consider the following "special viscous isentropic Euler equations"

for density p and momentum m:

a_p + a,m = ea,,p, (5.15a)

O_m+ O,[m-_-_+p(p)]=eO,,m. (5.15b)

Here the pressure p(p) = kp "t for some constants k and 7. This hyperbolic system has two

distinct eigenvalues u + e, where u = m/p is the velocity and e = V/-_p "r-1 is the sound

speed. Although the true numerical viscosity is far more complicated than those appearing

on the right-hand-side of (5.15), a study on (5.15) is sufficient for a full understanding of the

numerical momentum spike.

The traveling wave solution to (5.15) is examined. Let _ - ,-,t where s is the shock speed.

Then the traveling wave solution takes the form

with asymptotic states

p(z,t) = _b(_), m(z,t) = ¢(_) (5.16)

q_(::t:oo) : _b+, ¢(-4-oo) : ¢±. (5.17)

The Rankine-Hugoniot jump conditions require

-s(_b+ - ¢_) + (¢+ - ¢_) = 0, (5.18a)

][¢_- + p(¢+) _¢_) =0. (5.185)
-'(¢+ - ¢-) + t¢+ C-

First, the shock is assumed stationary (s = 0). It corresponds to the eigenvalue u - e. Then

the jump condition (5.18) reduces to

_/,+ = ¢_ '_'_ + p(¢+) + p(_b_), (5.19)
, ¢+ =_

and the Lax entropy condition gives

0 < u_ -e_ < u_ q-e_, u+--c+ < 0<u+q-e+, (5.20)

where u± = ¢+/¢+ and e = v/kT¢ "t-l.

Applying the traveling wave solution (5.16) in (5.15) one gets the following ODEs:

a_=¢-¢_,
¢_ ¢'_

a_¢ = -¢ + _¢) ¢- P(¢-)

(5.21a)

(5.215)
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This systemhas two fixed points: V+ = (¢+,_b_) on the right and V_ = (_b_,¢_) on the

left in the phase plane of (¢, ¢). It has two distinct eigenvalues, Az = u - e and A2 = u + c,

with corresponding eigenvectors t/z = (1, u - e) r and R3 = (1, u + e) r. By the entropy

condition (5.20), V+ is a saddle point with a stable manifold on Rz, and V_ is a source. Thus a

heteroclinic orbit O will connect V_ and V+ in the direction of Rz (Smoller 1983), as shown

in Fig. 5.7. (In Fig. 5.7 R[ and R_ are the two eigenvectors at V+ respectively). The orbit

O is smooth, and 0_¢ is not identically zero if_b_ # _b+. Thus (5.21a) implies that _/, is not a

constant. Moreover, whenever _( _) connects d?_ and _+ with a monotone profile, O_dpbecomes

a spike. Thus ¢ = O__b+ ¢_ is a spike.

For a nonstationary shock, the traveling wave solution (5.16) applied to (5.15a) gives

-,(¢- ¢-) +¢- O-, (5.22)

or

tk = ,_b + arab+ (_b_ - ,_b_). (5.23)

Hence ¢ is a superposition of a monotone profile sd? with a spike corresponding to a_#h. When s

is small (for a stationary or a slowly moving shock), the monotone profile _¢ becomes small and

the spike term Ot¢b dominates. Thus the shock profile of _ is a non-monotone spike. Therefore

the spike is usually generated in a stationary or slowly moving shock, as shown in the earlier

examples. For a strong shock the monotone profile s_b dominates so the shock profile of the
momentum is monotone.

Since the more physical viscous shock profile is determined by that of the Navier-Stokes

equations, the viscous profile of the isentropic Navier-Stokes equations is now studied and

compare it with that of the viscous Euler equations (5.15). The isentropic Navier-Stokes
equations are

_gtp + _9.rn = O, (5.24a)

Otrn + a, [-_-_ + _p)] = e_gn (_). (5.24b)

Applying the traveling wave solution (5.16) in (5.24) and again assuming the shock speed

----0, one obtains the following ODEs:

_b _ _/,_, (5.25a)

at = -T + ¢- (5.25b)

,f_
Equation (5.25a) shows that _/, is a constant and thus contains no spike. Let f(¢) = W- + P(¢)'
then (5.25b) becomes

O_(_) = f(¢)- f(¢_). (5.26)
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Since f(O) is a strict convex function and f(_b_) = f(q_+), f(O) - f(_b_ ) is always negative

between q__ and _+. Therefore, 0_(1/_) does not change sign by (5.26). This implies the

monotonicity of 1/0 or _b.

When _ _ 0, applying the traveling wave solution (5.16) in (5.24a) gives

=,¢+ (¢_ - ,¢_).

Thus whenever _bis monotone so is _b. This excludes the possibility of a momentum spike for a

moving viscous shock in the Navier-Stokes equations.

In conclusion, even if the viscous profile of _ of the Navier-Stokes equations (5.24) could

be similar to that of the viscous Euler equations (5.15), the profiles of _k may be significantly

different. Since the physically relevant solution of the Euler equations is considered to be

the zero viscosity limit of the Navier-Stokes equations, the momentum spike appearing in the

viscous Euler equations is totally nonphysical.

By examining the interrelation between the viscous Euler and the Navier-Stokes equation

one can come up with a change of variables that recovers the Navier-Stokes equations in

an asymptotic sense from the Euler equations. This also motivates a numerical change of

variable from the cell-center or cell average momentum to the mass flux, which eliminates the

momentum spike exactly. For details see (Jin & Liu 1996). However, what is more catastrophic

is the downstream oscillations, which cannot be easily eliminated, as will be studied next.

5.2.4. The Downstream Oscillations

Note that almost all shock-capturing methods are in conservative form. Due to the

conservation of momentum, the total mass of momentum carried by the spike profile should be

compensated by an equal amount of momentum mass elsewhere. This explains the formation

of the downstream waves.

Figure 5.8 shows the result of UWl for the previous example after 5 time steps to illustrate

the formation of the momentum spike and downstream wave. As the density is smeared, the

momentum forms a spike and a downstream wave. The spike and the downstream wave carry

the same mass so the total momentum is conserved.

In order to demonstrate that the downstream oscillations propagate along characteristics and

are diffusive, the Roe decomposition (5.12) is used, where cd' represents the component of

U.i+l - Uj in the p-th characteristic family. The numerical "characteristic" variable is defined

as

i<./

A distinction between the dispersive oscillations associated with center difference schemes and

the downstream oscillations studied here is that the latter lie only in their own characteristic
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family. For examplea wavewhichappearsin/3P does not appear in/3g for p _ q. These can be

seen in Fig. 5.9 where each wave moves away with the corresponding characteristic speed, and

behaves diffusively (spread out and decay).

Figure 5.10 displays the time evolution of the momentum profile of the first-order Roe's

scheme for the same example. One can see that the spike (viscous) profile keeps fluctuating in

an O(1) manner, causing the downstream oscillations for all time. The diffusive nature of the

downstream oscillations is evident in the picture.

Figure 5.11 shows the peak of the momentum spike as a function of time. The fluctuating

nature of the spike is evident. The more the mass of the spike profile varies the more strongly the

diffusion waves emerge for momentum conservation. Interesting is that the peaks are periodic,

with the duration of each period agreeing with the time for the shock to move one grid point.

Consequently, the discrete shock profile is stable only modulo this period. However, within

each period it is fluctuating, which becomes the source of the new downstream waves.

Recall that the definition of a discrete traveling wave solution _, an approximation of

U(zj,tn),t, = nAt, requires _ o= _j_,p, where sAt/Az = p/q for some relative prime
integers p and q. The stability of such a discrete shock for the Lax-Friedrichs scheme was

established by Jennings (1974) for scalar equations and by Majda and Ralston (1979) and Liu

& Xin (1993) for nonlinear systems. The periodicity of the momentum peaks in Fig. 5.11

shows the stability of the discrete traveling wave solution ,I_ for these schemes' modulus the

time for the shock to travel one grid point. This is because, when sat << Az, there exists a

sufficiently large q such that Iq(sAt) - Azl < sAt, or IsAt/Az -- 1/ql < 2/q _. However,

within each period the numerical shock layer is unsteady and corresponds to different traveling

wave profiles, which become the source of the new downstream waves in all time for these

schemes.

A scheme that completely eliminates the downstream oscillations in later time should have

a steady viscous profile beyond the initial formation of the spike; i.e., the momentum spike

peak should remain a constant in later time. However, this is impossible as long as the shock is

moving and it takes many times for the shock to move to the next cell.

The discrete shock profile perturbs even when the shock does'not move slowly. Thus

the downstream oscillations exist even for fast shocks. However, in the fast shock case the

momentum profile is monotone and thus does not leave much room for the shock profile to

perturb. In other words, each perturbation does not change the mass of the viscous profile

much, and the downstream errors become negligible. For slow shocks the momentum profile

has a spike, which increases the mass of the viscous profile and the relative mass change in each

perturbation. Therefore, the downstream errors become more significant. This also illustrates

why the downstream errors in the density are far less significant. Since the density is monotone,

the relative change in the mass of the viscous profile is smaller than that of the momentum.

In summary, although each family of the downstream waves decay time-asymptotically, the

perturbing spike or viscous profile is a constant source for the generation of new downstream
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waves,causingthe downstreamnoise for all time. Higher order methods use higher order

interpolations, which amplify the noise and exhibit rich but spurious post-shock structures.

5.2.5. Discussions and Conclusions

As studied in (Jin & Liu 1996), similar behavior occurs in schemes that are of monotone,

TVD or ENO type. Note that all these monotonicity theories are established only for scalar

equations, or linear systems via the characteristic variables. For nonlinear systems there are no

global characteristic variables. Thus these methods are usually extended to nonlinear systems

using the idea for linear systems; i.e., via the so-called local characteristic decomposition (using

the Roe matrix example). Since there is no theory for the monotonicity of these methods for

nonlinear systems, it is not surprising to see the non-monotone behavior represented by the

spike and the downstream oscillations reported here. As pointed out by Jin & Liu (1996),

to fully solve this problem, instead of applying scalarly monotone, TVD or ENO scheme to

nonlinear systems, one may need a method that is systematically "monotone, TVD or ENO".

One may also need to choose numerical viscosity properly so it mimics the physical viscosity

of the Navier-Stokes equations. The ultimate goal is to have a scheme that not only provides a

high resolution but, more importantly, has a more stable viscosity profile.

The novelty of the work of Jin and Liu is that they are the first to use the traveling wave

analysis to prove the non-monotonicity of the solution for nonlinear systems, and to link the

downstream oscillations to the stability of discrete traveling wave profile. To really understand

the behavior of shock-capturing methods for nonlinear systems, and to ultimately design

nonoscillatory schemes for nonlinear systems, good theories for both inviscid and viscous

nonlinear systems need to be developed. This remains an open and challenging research subject
for the future.

5.3. Spurious Vortices in Under-Resolved Incompressible Thin Shear Layer Flow Simulations

Brown & Minion (1995) performed a thorough study of a Godunov-projection method and a

fourth-order central difference method for the two-dimensional incompressible Navier-Stokes

equations as a function of the resolution of the computational mesh with the rest of the physical

and discretized parameters fixed. In the authors' opinion, this is a good example of isolating

the cause of the spurious behavior. The physical problem is a doubly periodic double shear

layer. The shear layers are perturbed slightly at the initial time, which causes the shear layer to

roll up in time into large vortical structures. For a chosen shear layer width that is considered

to be thin and a fixed perturbation size, they compared the solution for four different grid sizes

(64 × 64, 128 × 128, 256 × 256, 512 × 512) with a reference solution using a grid size of

1024 × 1024. For the 256 × 256 grid, a spurious vortex was formed midway between the

periodically repeating main vortex on each shear layer. The 128 x 128 solution showed three

spurious vortices along the shear layer. The spurious vortex disappeared with a 512 × 512

mesh. They also disabled the limiters (a slyictly upwind Fromm's method), and found the
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behaviorto besimilar. Theyalsocitedotherwork usingLax-WendrofftypeandENO schemes
wheresimilarbehaviorwasobserved.They concludedthatthespuriousvortexis theartifact of
underresolutionof thegrid. Linking this behaviorwith a re-interpretationof their conclusion
usingnonlineardynamics,we interprettheir observationasfollows.For theparticulargrid size
andtime stepcombination,stablespuriousequilibriumpointswereintroducedby thenumerics
intoaportionof theflow field while themajor portionof theflow field waspredictedcorrectly.
In otherwords, the spuriousvorticesare the solution of the discretizedcounterpartfor that
particularrangeof grid sizeandtimestep.Thenumberof stablespuriousvorticesis a function
of the grid size. As the grid spacingdecreases,the spuriousequilibriumsgraduallybecome
unstableandthenumericalsolutionmimics thetrue solution.

5.4. Convergence rate for systems of hyperbolic conservation laws

In Section 4.2.1 the system (4.7a), (4.7b) was solved with the initial data

1 z<OueCz) = -1 z > 0' re(z): 1. (5.29)

The exact solution is then independent of time. In order to see the dynamical behavior of the

error propagating from the shock, here a time dependent problem is solved instead. This can be

accomplished by changing to a different initial data. Sjogreen (1996) use the initial data

1 z_<OuoC=) = -1 z > 0 re(z) = sinlrz (5.30)

for the same system of partial differential equations (4.7). With these data, the exact solution is

,,(=,t) = ,,o(=) ,,(=,t) = - t). (5.3:t)

He solves the problem numerically on the interval -1 < z < 1, using 100 uniformly

distributed grid points. The numerical method is again a fully second order accurate scheme of

ENO type in space, and a second order accurate Runge-Kutta method in time. The exact value

v(- 1, t) = sir, n'(- 1 - t) is given on the left boundary and second order accurate extrapolation

is used at the boundary z = 1.

Figure 5.12 shows the u and v-components of the solution at the time 0.265958, computed

on 100 grid points. There is an error in the v component, similar to what can be seen in Figure

4.2. However here it is harder to see it in the plot, since the sine wave solution forces a different

scaling of the//-axis.

A better way of seeing the error is in Fig. 5.13, where the logarithm of the pointwise error in

the v component is plotted against z. The three plots correspond to 30, 100, and 200 time steps

respectively. A domain of first order grid convergence is propagating out from the shock, seen

as a flat region of large error in the plots. The first order convergence in this region was, in this
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case, obtained from numerical experiments, although analytical examples are also possible (see

Engquist & Sjogreen (1995)).

VI. Concluding Remarks

The need for the study of dynamics of numerics is prompted by the fact that the type

of problem studied using CFD has changed dramatically over the past decade. CFD is also

undergoing an important transition and it is increasingly used in nontraditional areas. But even

within its field, many algorithms widely used in practical CFD applications were originally

designed for much simpler problems, such as perfect or ideal gas flows. As can be seen in

the literature, a straightforward application of these numerical methods to high speed flows,

nonequilibrium flows, advanced turbulence modeling or combustion related problems can lead

to wrong results, slow convergence, or even nonconvergent solutions. The need for new

algorithms and/or modification and improvement to existing numerical methods in order to

deal with emerging disciplines is evident. We believe the nonlinear dynamical approach for

CFD can contribute to the success of this goal. The first step toward achieving this goal is

to understand the nonlinear behavior, limits and barriers, and to isolate spurious behavior of

existing numerical schemes.

We have revealed some of the causes of spurious phenomena due to the numerics in an

attempt to improve the understanding of the effects of numerical uncertainties in CFD. We

illustrated with practical CFD examples that exhibit similar properties and qualitative behavior

as elementary examples in which the full dynamical behavior of the numerics can be analyzed.

We have also shown that guidelines developed using linearization methods are not always valid

for nonlinear problems. Even well-informed use of conventional methods may lead to nonsense

on unconventional problems. We have gained an improved understanding of long time behavior

of nonlinear problems and nonlinear stability, convergence and reliability of time-marching

approaches. We have learned that numerics can introduce and suppress chaos and can also

introduce chaotic transients and the danger of relying on numerical tests (e.g., direct numerical

simulation) for the onset of turbulence and chaos is evident. The nonlinear phenomenon and

spurious behavior exhibited by the numerics in solving genuinely nonlinear problems reveal

many of the limitations, challenges and barriers in CFD. We believe the knowledge gained

so far has already provided some improved guidelines for overcoming the spurious behaviors

without resorting entirely to the tuning of computational parameters. Since standard procedures

such as using physical guidelines, grid refinement, halving of the time step, and using more than

one scheme to assure the quality, reliability and the integrity of the numerical solution for stiff

and strongly nonlinear problems are not foolproof and/or not always possible, the dynamical

systems approach can be a viable complement. Before additional theories are established, we

conclude that the safest route is to have some understanding of the dynamical behavior, limits

and barriers of the numerical method being used.

As can be seen, recent advances in dynamics of numerics showed the advantage of adaptive

step size error control for long time integrations of nonlinear ODEs. Although much research
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is needed to construct suitable yet practical similar adaptive methods for PDEs, these early

developments lead our way to future theories. There remains the challenge of constructing

adaptive step size control methods that are suitable yet practical for time marching to the

steady states for aeronautical CFD applications. Another even more challenging area is the

quest for an adaptive numerical scheme that leads to guaranteed and rapid convergence to the

correct steady-state numerical solutions. These two key challenges are particularly important

for CFD. We conclude the paper with the following guidelines to minimize spurious dynamics

in time-marching to the steady state.

Some GuidelineJ to Minimize SpuriouJ DynamieJ: Due to the spurious dynamics intro-

duced by the numerics, one usually will not be able to map out the complete numerical basins

of attraction and bifurcation diagrams for the entire problem in practical situations. Only in

isolated situation with a particular physical problem and numerical method combination such

as the one studied in Lafon & Yee (1991, 1992) are continuation methods able to locate all of

the essential spurious branches of the bifurcation curves.

On the other hand, continuation methods are widely used in dynamical systems when one

wants to understand certain properties of key branches of the bifurcation curve, especially if

one knows (or can ascertain by other means) a starling solution on that particular branch. For

example, in the Taylor-Couette flow problem, extensive use is made of continuation methods to

map out the critical Reynolds number when the flow behavior undergoes drastic changes in flow

patterns, since in this case we know how the flow behaves for the low Reynolds number case.

Another example is in Bailey and Beam (1991) who used it to study the hysteresis behavior of

the flow of an airfoil in terms of angles of attack for the steady PDEs. In this case, the flow

behavior is readily obtained for low angles of attack (before hysteresis). Most of the use of the

continuation method so far is focused on elliptic PDEs or steady PDEs. These studies seldom

address the possibilities of spurious dynamics due to the numerics, especially for IBVPs using

time-marching approaches. It is remarked that a shortcoming in association with solving the

steady PDEs is that a small radius of convergence or nonconvergence of the numerical solution

is often encountered even with the aid of multigrid, preconditioners, and/or relaxation methods,

especially when the PDEs are of the mixed type (e.g., the steady inviscid supersonic flow over

a blunt body). In addition, the solutions obtained do not distinguish whether the steady states
are stable or not.

Besides the study in Lafon & Yee (1991, 1992), here we propose a further step of applying

this technique to the discretized counterparts of the time-dependent PDEs in order to avoid

spurious asymptotes due to unknown initial data. The idea relies on the knowledge of a known

or a reliable numerical solution on the correct (non-spurious) branch of the bifurcation curve

as a function of the physical parameter of interest. The logic is that if one starts on the correct

branch, one avoids getting trapped on any of the spurious branches. Also the issue of unknown

initial data related to time-marching approaches is avoided or can be minimized. Details of the

approach and numerical examples will be reported in a forthcoming paper. Here we will give a

short narrative summary of the procedure.

76



In manyfluid problemswherethesolutionbehavioris well knownfor certainvaluesof the
physicalparameters,but unknownfor othervalues.For theseothervaluesof theparameters,
theproblemmightbecomevery stiff and/orstronglynonlinear,makingtheavailablenumerical
schemes(or theschemein use)intractable.In thissituation,continuationmethodsinbifurcation
theorycanbecomeveryuseful. If possible,oneshouldstartwith thephysicalparameterof a
known or reliablesteadystate(e.g.,flow behavioris usuallyknown for low anglesof attack
butnot for high anglesof attack).Onecanthenuseacontinuationmethodsuchasthepseudo
arclengthcontinuationmethodof Keller (1977) (or the recentdevelopmentin this area) to
solvefor thebifurcationcurveasa functionof thephysicalparameter.Theequationsusedare
thediscretizedcounterpartof the steadyPDEsor thetime-dependentPDEs.If time-marching
approachesareused,areliablesteady-statenumericalsolution(asastartingvalueon thecorrect
branchof thebifurcationcurve for a particular valueof thephysicalparameter)is assumed.
Thisstartingsteady-statenumericalsolutionis assumedto havethepropertimestepandinitial

data combination and to have the grid spacing f'me enough to resolve the flow feature. The

continuation method will produce a continuous spectrum of the numerical solutions as the

underlying physical parameter is varied until it arrives at a critical value pc such that it either

experiences a bifurcation point or falls to converge. Since we started on the correct branch of

the bifurcation curve, the solution obtained before that Pc should be more reliable than if one

starts with the physical parameter in question and tries to stretch the limitation of the scheme.

Note that by starting a reliable solution on the correct branch of the bifurcation curve, the

dependence of the numerical solution on the initial data associated with time-marching methods
can be avoided.

Finally, when one is not sure of the numerical solution, the continuation method can be used

to double check the numerical solution. This approach can even reveal the true limitations of

the existing scheme. In other words, the approach can reveal the critical physical parameter

for which the numerical method breaks down. On the other hand, if one wants to f'md out the

largest possible time step that one can use for a particular problem and physical parameter, one

can also use continuation methods to trace out the bifurcation curve as a function of the time

step. In this case, one can start with a small time step with the correct steady state and observe

the critical time step as it undergoes instability or bifurcation.
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Scheme Fixed points Stable range

.Explicit Euler 1

Modified Euler 1

1 + 2/r

2/r

Improved Euler 1

[2 + r + V'_-4]

2r

Heun 1

8

R.K4 1

0<r<2

0<r<2

0<r< -1 + V_ _- 1-236

2<r<1+V_3-236

0<r<2

2 < r <V_- 2.828

0 < • < 1 + (vTff + 4)':3 _ (V_ + 4)-,:3 _ 2.513

4.9137 < • < 4.9552

6.4799 < • < 6-4853

6-74405 < • < 6-74575

0< •< _+ (_ + _V_)':'

+ (_ - IVY) ':_ _ 2-785
2.785 < • < 3-4156
2.746 < • < 3.456

Table 3.1. Fixed points of Runge-Kutta methods for du/dt = au(1 - u).

Scheme Fixed points Stable range

Explicit Euler

Modified Euler

Improved Euler

1
O<r<8

1
O<r<8

i[1 + X/i--S-_/r] 32 < • < 32-014067

½[1 + V_ - 8/r] 8 < • < 4(1 + V_) -- 10-928

¼[3 - V_ - 32/r] 32 < • < 32-014067

! O<r<82

1 ± X/I - 8/r
8<r<12

2

V_ - 12/r ± V_ + 4/r
4 4 12 < • < 4(1 + vr6) _ 13-798

1 _-12/r vCl+4/r
+ ±

2 4 4

Heun ½

R-K4 ½

12 < • <4(1 + V_) _ 13.798

O< • <4(1 + (V_ + 4) vs

- (V'_ + 4) -'rs) = 10.051

0 < • < _ + 4(z-z_ + _V_9) 'n

+ 4(_ - _v_9) ,_ -- 11.14

Table 3.2. Fixed points of Runge-Kutta methods for du/dt = an(1 - u)(0.5 - u).
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S(u) (3.11) (3.17) (3.18) (3.19) (3.21)

u(1 -u) 0 2 2 6 14
u(½ - u)(1 - u) 0 6 6 24 78

Table 3.3. The number of spurious fixed points of Runge-Kutta methods

for (3.7a) and (3.23).

Equation Period 2 orbits Stable range

u' = _u(1 - u)

u' = au(1 - u)(½ - u)

r+2±V_-4

2r

1 ± x/f- 8/r

2

12/r _ + 4[r

2 4 4

1 1Vrl_-12/r
+ .t._

2 4 4

2 < r < V_- 2-4495

8<r<12

12<r< 14

12<r<14

Table 3.4. Period 2 fixed points of the explicit Euler method.
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scheme ci c i
E-O

minmod

superbee

van Leer

van Albada

0.65

0.5

0.6

0.6

0.9

0.75

0.7

0.7

0.7

Table 4.1. Convergence regions for the explicit schemes.

scheme converges to xl converges to x2

E-O

minmod

superbee

van Leer

van Albada

c<11

c<11

c<11

¢<11

c _ 22.5

c _> 21.5

c > 22.5

Table 4.2. Convergence regions for the implicit schemes.

at stable shock

scheme X Y

explicit E-O 0.36 -0.47

0.37 -0.48implicit E-O

stable

At < 0.057

VAt

at unstable shock

X

0.40

0.52

-0.29

0.40

0.52

-0.29

Y

-0.32

0.26

-0.53

-0.32

0.26

-0.53

stable

At < 0.1043

At < 0.1031

At > 1.0585

VAt

VAt

Table 4.3. Analytical FLxed points of the reduced system.

92



I!
0
I!

4c

A

0

^

°

A

LL_
r_
©

,mr

°_

..Q

O
-_

0

E

°_..q

93



Lt

1,0

|

U_

u'

aN

15,2_

4\ e

IdNIdlU f_uir

, , , , ,
_11 u U u U 4,o

WEuWr

u

4.

,o
1,6

"1 z,|

4

U U U

U'

,4

el
, 0

U

R-4(4

iv
I8' :1 4

f -'F",

_o

z,,4

1,1.

P-C2

2 4

;"_4

II

4

I '4 4

: ,
4

P, C3

2 4

4

(e
O , , , , , 0 , , , ,

LO U ;_0 U 4,0 _ U _1 U U 4,11

r - e_ r o es-

Fig. 3.2. Fixed point diagrams of periods 1, 2, 4, 8 for the logistic ODE (a > 0).

94



A

J

.a

I

b=0.1

248

2 4 I

D)

I

/_//| ! | •

blO.2

4"11

10 14 tl 11

qrl_

I-

ll)

III 0.3

d/o

f mldil

JI- b.O.4

4 |

r

Fig. 3.3. Stable f'txed points of periods 1, 2, 4, 8 of the modified Euler method for the ODE

d./_ = ,_u(1- u)(b- u).

95



DIAGRAM LOOKS THE SAME REGARDLESS OF I.C. FOR ALL u°>0

CHAOS WINDOWS NEAR: 2_627, 2_634, 2.738, 2_828, BELOW 3

Fig. 3.4. Bifurcation diagram of the explicit Euler method for the logistic ODE (a > 0).
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Fig. 4.2. The u- and v-components of (4.7) for a second-order ENO scheme.
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Fig. 5.9. The downstream waves in "characteristic" variables. Note that each wave belongs

only to one characteristic family and diffuses.
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Fig. 5.10. Time evolution of the momentum spike and the downstream waves by the Roe's

lst-order upwind scheme for t E [0.5, 0.8]. For better visualization these graphs are displayed

upside down. The diffusive nature of the downstream pattern is apparent.
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Fig. 5.11. Time evolution of the peak of the momentum spike by the Roe's lst-order upwind
scheme
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Fig. 5.12. The u and v-components of the solution of (4.7) and (5.30) at time 0.265958 for a

2nd-order ENO scheme with 100 grid points.
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